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Objective: The antimicrobial properties in multifloral honey have been utilized for centuries in 
wound healing, as well as infection treatment and prevention. The chemical properties from the 
nectar source, enzymes produced by the bee, as well as the digestive activity of the 
microorganisms in the bee gut all contribute to the antimicrobial activity of honey. Honeybee 
farms in four locations across southwestern Virginia (Fincastle, Covington, Troutville, and 
Martinsville) were visited in the fall of 2021 to collect honey (fall and spring), worker bees, and 
pollen pellets. Disk diffusion assays were used to  
assess the antimicrobial activity of fall and spring honey against ESKAPE pathogens. Pollen 
analysis was completed on the spring honey and fall pollen pellets to identify the plant species on 
which the bees were foraging at each time of year. Lastly, the honeybee gut was dissected, and 
the microorganisms within the midgut and hindgut were isolated and identified using 16S rRNA 
gene sequencing to identify the cultivable microbial community in the bee gut. 
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Abstract 

The antimicrobial properties of multifloral honey have been utilized for centuries in 

wound healing, as well as for infection treatment and prevention. The chemical properties from 

the nectar source, enzymes produced by the bee, as well as the digestive activity of the 

microorganisms in the bee gut all contribute to the antimicrobial activity of honey. Honeybee 

(Apis mellifera, the western or European Honeybee) farms in four locations across 

southwestern Virginia (Fincastle, Covington, Troutville, and Martinsville) were visited in the fall 

of 2021 to collect honey (fall and spring), worker bees, and pollen pellets. Disk diffusion assays 

were used to assess the antimicrobial activity of fall and spring honey against ESKAPE 

pathogens. Pollen analysis was completed on the spring honey and fall pollen pellets to identify 

the plant species on which the bees were foraging at each time of year. Lastly, the honeybee 

gut was dissected, and the microorganisms within the midgut and hindgut were isolated and 

identified using 16S rRNA gene sequencing to identify the cultivable microbial community in the 

bee gut. Martinsville spring honey demonstrated the strongest antimicrobial properties among 

spring and fall honey among sample site. Fall honey generally demonstrated stronger 

antimicrobial properties than spring honey and manuka honey (a monofloral honey from the 

Manuka bush in New Zealand and known to have strong antimicrobial properties). Fincastle 

spring honey had the most species diversity in foraged pollen, and tree pollen was 

unexpectedly found to be significant in bee diet. Lastly, the gut microbes identified produce 

antimicrobial properties, mostly antimicrobial peptides (AMPs) produced by Bacillus species.  
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Introduction 

 Honeybees have played a key role in ecosystems worldwide for millennia. European 

Honeybees (Apis mellifera) are considered a cornerstone species because they are pollinators 

that ensure the plants of terrestrial ecosystems are able to produce offspring and continue 

providing sustenance for the honeybee population and other organisms (Engel et al. 2016). 

From working around the clock to keep the hive running, to investing energy in offspring to 

produce the sweet, viscous food known as honey, honeybees function at such a highly 

organized level that no other insect on earth is believed to compare, even though there are 

many eusocial insects found in nature (Engel et al. 2016).  

Thousands of years ago, humans began utilizing honey as a food source, as well as a natural 

medicinal tool, because of its extensive antibacterial properties. During the Stone Age, 

approximately 8 millennia ago, early humans painted on cave walls pictures depicting the 

utilization of honey to heal the wounded and diseased, making honey the oldest healing 

substance known (Samarghandian et al. 2017). The translation below comes from the Quran 

and was written originally 1,400 years ago in the Middle East. 

 “And thy LORD taught the bee to build its cells in hills, on trees and in men’s habitations, 

then to eat of all the produce of the earth and find with skill the spacious paths of its LORD, 

there issues from within their bodies a drink of varying colors, wherein is healing for men, 

verily in this is a sign for those who give thought” (Al-Waili et al. 2014).  

Aristotle also promoted the use of therapeutic honey, saying, “[honey is] good as a salve for 

sore eyes and wounds” (Carter et al. 2016). The embalming ceremonies of the Egyptians 

involved the use of honey to dress wounds and apply to damaged skin prior to wrapping the 
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body (Mijanur Rahman et al. 2014).  In addition to wound care, Greeks treated gout, fever, and 

pain with honey (Nolan et al. 2019). The Babylonians, Chinese, Mayans, Romans, and others 

used honey for its medicinal and dietary benefits (Mijanur Rahman et al. 2014). In modern 

times, once antibiotics were being used in the 1960s, chemical, lab-manufactured western 

medicine began to soar. Natural medicinal tools, like honey, became known as “alternative,” 

and their use declined drastically in western medicine. With the increases in antibiotic 

resistance, researchers are turning back to honey to combat microbial activity in wounds (Nolan 

et al. 2019, Carter et al. 2016). There are about 300 types of honey produced by Apis mellifera, 

all with different ranges of antimicrobial activity (Samarghandian et al. 2017). Aside from the 

antimicrobial properties, further investigation has shed a light on the many other health 

benefits of honey for the improvement of functionality of various body systems, including the 

respiratory, cardiovascular, nervous systems; honey also exhibits antidiabetic and anticancer 

effects (Ciancosi et al. 2018). To investigate the healing aspects of honey, its physical and 

chemical properties, as well as their derivation, need to be defined. The nectar source, as well 

as the honeybee’s gut microbiome and enzymes its digestive system produces, lead to the 

curious properties of honey that medical professionals are beginning to rely on today (Fig. 1) 

(Nolan et al. 2019; Al-Waili et al. 2014; Mandal and Mandal 2011). While honey has numerous 

benefits for different systems of the human body (Ciancosi et al. 2018), this paper will focus on 

honey’s antimicrobial properties.  
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Honeybees and Their Ecology 

The Life and Behavior of a Honeybee 

 A honeybee hive consists of thousands of honeybees: a queen, workers (females), and 

drones (males). Drones make up the smallest population of the hive, as they are needed only to 

mate with the queen and provide genetic diversity. Drones do not do any of the work 

performed by worker bees to maintain the hive, and they have no stinger (Kešnerová et al. 

2019). The worker bees only live for about a month but accomplish an unimaginable amount of 

work in their lifetime. The lifespan of worker bees in the winter is six times longer than that of 

spring or summer workers. It is thought that winter workers live much longer because they are 

feeding on old pollen bread, which contains a higher bacteria load and shifts the microbiome 

favorably (Kešnerová et al. 2019). Pollen bread is a combination of foraged pollen and 

honeybee secretions packed into cells of the comb for high protein consumption (Kešnerová et 

al. 2019). Because workers, aside from winter workers, generally live for only one month, they 

altruistically invest all of their time and energy into the next generation to ensure the hive’s 

success and longevity (Wolfgang and Habersack 1998). Eusociality in honeybees has been 

examined in many studies. A bee stings a predator to paralyze or kill it in order to protect the 

colony, and as a result, the bee perishes. Workers work their whole short lives to sustain all the 

members of the hive (Mullen and Thompson 2015). The specific job of a worker bee changes 

every few days. Workers can act as nursing bees- bees that care for larvae, foragers, wax-

makers, or guards at the front of the hive (Fig. 1D). Nursing bees keep the larvae and queen fed 

and warm (Fig. 1D). Larvae need to be kept at 95˚F and need continuous supplies of protein-

dense pollen, so they consume “pollen bread,” also called “bee bread” (Fig. 1D), which is a 
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combination of pollen packed in a cell with ripened honey and additional enzymes secreted by 

the workers (Wolfgang and Habersack 1998). Pollen is not only a source of protein, but also a 

source of fatty substances, minerals, and vitamins (Bibi et al. 2008). Pollen is also the only 

source of lipids and proteins for the honeybee (Didaras et al. 2020). The darker cells on a comb 

contain this pollen bread. All eggs are void of bacteria, and the importance of social interactions 

begin in the larval stage with the nursing bees passing some of their gut bacteria to the larvae 

to allow their bodies to begin the symbiotic relationship with their bacteria (Kwong et al. 2016).  

Most eggs laid are also of equal rank in the social hierarchy, but those offspring fed royal 

jelly will grow to be queens. The queen is fed royal jelly her whole life including during 

development as a larva. Royal jelly consists of milky hypopharyngeal gland secretions from the 

workers and makes the queen much larger than the other colony members (Klose et al. 2017; 

Wolfgang and Habersack 1998). Found in the front of the head capsule, the hypopharyngeal 

gland is an exocrine gland with secretory cells and duct cells in sets of 12 around a long 

collection duct. When the job of a worker bee shifts from nursing the larvae and queen to 

foraging, the hypopharyngeal gland shrinks, secretes less, and begins producing proteins, 

including enzymes, to break down foraged carbohydrates (Klose et al. 2017). Foraging worker 

bees search for honey twelve hours a day and leave the hive in one-hour shifts. They visit 

hundreds of flowers a day to collect nectar and pollen. Approximately 5 million flowers’ worth 

of nectar yields only a single pint of honey. Therefore, since foragers can travel up to a few 

miles from the hive, they must ensure enough flowers are present to be their long-term nectar 

sources (Wolfgang and Habersack 1998).  
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 Once a population becomes too large to sustain, the queen decides it is time for a split. 

She signals the workers to swarm and begin searching for a new location, like a hollow tree, to 

construct a new hive (Wolfgang and Habersack 1998). If the swarm cannot find a home to their 

liking quickly, the swarm will perish (Campbell 2021). When a location is deemed fit, the queen 

lays approximately a dozen eggs in the original hive in an effort to replace herself. She heads to 

the new hive’s location and takes a swarm of half of the original colony with her to start anew, 

leaving behind a nucleus colony (“nuc”), a colony with the bare minimum members to thrive 

(Wilson 2021). As the potential queens of the original hive develop into larvae, and the workers 

feed them all the royal jelly they can eat, the workers at the newfound hive location begin to 

form bee chains as a form of measuring how long their combs need to be. Once a new hive’s 

construction process has begun, workers secrete an abdominal scent in order to deem this new 

home theirs, as well as aid any swarm stragglers in finding their way to their new home. A 

comb, made out of workers’ waxy secretions, is two sheets of hundreds of hexagonal cells with 

a base in between the sheets. The amount of energy required to make a single ounce of wax is 

about a pound of honey, and from larva to adult stage, about a three-week maturation process, 

a worker bee consumes 142 mg of honey (Bibi et al. 2008; Wolfgang and Habersack 1990). This 

puts into perspective the number of workers with full stomachs of honey needed to construct 

this new home. Pollen bread, honey, and larvae are stored in these capped cells (Wilson 2021; 

Wolfgang and Habersack 1998). It is estimated that a colony of bees, including the larvae, 

consume 20 kgs of pollen every year (Seeley 1991). When workers pupate, they grow in such a 

way that the cell grows larger horizontally. The queens, however, grow vertically as they pupate 

(Wilson 2021). Back at the original hive with the dozen potential queens pupating, one queen 
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hatches first. She will begin stinging the other still-pupating queens to death in their sensitive 

abdomen through their chrysalis, ensuring her victory as queen. A week after a virgin queen has 

crowned herself, she takes her mating flights a few days consecutively to mate with about ten 

drones per day. The drones have much larger eyes than the workers and the queen to allow 

them to spot the virgin queen on her mating flight. Once a drone has successfully mated with 

the queen, he dies and plummets to the ground, the queen holding the remainder of his 

abdomen to signal to the workers upon her return to the hive that she was successful. Over the 

course of a few days of mating flights, the queen collects and stores enough sperm to create 

eggs for the remainder of her lifetime, which is one to four years. A queen lays about 1,500 

eggs daily (Fig. 1D), except in the winter, and about 200,000 eggs per year (Wolfgang and 

Habersack 1998). This polyandrous mating yields genetic heterogeneity among the members of 

the hive (Wolfgang and Habersack 1998).  

 Honeybee workers do not mate and reproduce. Surrendering the chance to pass on 

their own genes and raise their own young, workers do not reproduce and leave the queen with 

the responsibility of creating offspring (Pirk et al. 2002). Fertilized eggs yield workers, while 

unfertilized eggs yield drones (Wilson 2021). Workers cannot mate, so they resort to asexual 

reproduction in which they can only produce haploid drones (Pirk et al. 2002).   

Honeybees are considered eusocial insects because colonies involve generational 

overlap, reproductive division of labor, and cooperative care for brood (Queller and Strassman 

2014). Eusocial insects have evolved to be highly efficient in their division of labor and benefit 

from group living (Keller and Chapuisat 2014). What is now referred to as kin selection was an 

idea of W. D. Hamilton in the 1960s, which quantified the concept of gene sharing, or 



12 

 

relatedness (Queller and Strassman 2014). Kin selection is selection on genes causing behavior 

in one individual through the effects on fitness of other individuals who are genetically related 

(Queller and Strassman 2014). Kin selection is related to inclusive fitness, the sum of an 

individual’s fitness effects on self and others multiplied by the individual’s relatedness to each 

party (Queller and Strassman 2014). Hamilton’s rule states that inclusive fitness is positive only 

when behavior evolves (Queller and Strassman 2014). Kinship and inclusive fitness directly 

apply to eusocial insects of the order Hymenoptera, including bees, ants, and wasps (Queller 

and Strassman 2014). Instead of a parent caring for its offspring as seen in direct fitness, 

indirect fitness involves alloparenting in which family members, aside from parents, care for 

offspring. Honeybees exhibit indirect fitness because the honeybee sisters care for their siblings 

rather than reproducing themselves (Seehuus et al. 2006).  

Honeybees exhibit strange genetic characteristics due to their haplodiploidy, which is a 

sex determination system involving female diploids randomly passing half of their genome to 

offspring and male haploids passing their full genome only to daughters (Keller and Chapuisat 

2014; Queller and Strassman 2014). This leads to Hamilton’s haplodiploidy hypothesis that 

unusually high relatedness in sisters was critical in evolution of eusociality (Queller and 

Strassman 2014). The honeybee queen stores drone sperm from her mating flights in which 

drones from other hives mate with her, supplying a key source of genetic diversity (Queller and 

Strassman 2014). The eggs she does not fertilize are fatherless haploid males, or drones, 

whereas the eggs she does fertilize are diploid females (Queller and Strassman 2014). Especially 

when sister bees share the same drone father, their degree of genetic relatedness is unusually 

high (Queller and Strassman 2014).  
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Polyphenism is excellently demonstrated by the honeybee (Evans and Wheeler 1999). 

Polyphenism is the expression of different morphologies with physiological and behavioral 

accompaniments (Evans and Wheeler 1999). The morphological phenotypes of the honeybee 

contribute to the division of labor (Evans and Wheeler 1999). The following are examples of 

physiological differences based on labor. Workers have larger hypopharyngeal glands for 

honey-making, but when the worker bee switches jobs and becomes a forager, the 

hypopharyngeal gland shrinks since it is not needed for secretions (Klose et al. 2017; Pernal and 

Currie 2000). Lastly, the queen is large and fed solely royal jelly, and her reproductive system 

develops much faster than other females (Evans and Wheeler 1999). Different morphologies 

exist even though all females within a hive are genetically identical diploid sisters (Evans and 

Wheeler 1999). 

Foragers’ Selection of Nectar Sources  

A foraging worker bee does not simply spot a flower and extract some of its nectar. The 

forager works as part of a collective determining which nectar sources should be used to 

produce their honey to feed the colony (Wolfgang and Habersack 1998). When a forager finds a 

new food source, she performs a “waggle dance” in which she moves her abdomen to direct 

the others to her newfound food source. The speed, direction, and number of patterns in the 

abdomen movement acts as directions for the others to memorize. Foragers also use the sun as 

a reference point in explaining to each other if the nectar is right, left, or ahead (Wolfgang and 

Habersack 1998).  

Honeybees must rely on different plants depending on the time of year. When a specific 

plant is prosperous during one season, the foragers shift their diet to include the nectar from 
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that particular plant. This the primary reason honey is darker during certain season; the nectar 

source varies based on available vegetation. Colors of honey range from amber, to dark amber, 

to yellow, to reddish amber to virtually black. The combination of active compounds in different 

nectar sources contributes to the color, taste, and smell of honey (Nolan 2019). Climate and 

colony size (and therefore the queen’s ability to lay eggs) also affect the characteristics and 

properties of the honey yield. The darker the honey, the richer in flavor and the more 

antimicrobial it will be (White and Doner 1980). Honey is marketed as multifloral and unifloral, 

also called varietal. For honey to be deemed unifloral or varietal, the majority of the nectar 

used to create it must come from one particular species of plant, like orange blossom honey or 

avocado honey, whereas multifloral honey is produced by bees using various nectar sources, 

not one much more than another (Campbell 2021; White and Doner 1980). Pollen grains in 

honey can even be used to identify the plant species from which the nectar originated (Bibi et 

al. 2008). 

According to a Virginia beekeeper, some nectar sources in southwestern Virginia, depending 

on season, are as follows: red maple, black locust, blackberries/dewberries, and non-native 

bush honeysuckle in the spring; tulip poplar, clover, and wildflower/dearth in early summer; 

and asters, goldenrod, and wingstem in the fall. From June through August, honeybees do not 

have nearly as many available nectar sources due to heat and drought, which causes a dead 

spot in the bloom sequence. This limits them extremely, causing starvation. In southwestern 

Virginia, the plants in the spring provide nectar that yields very light amber honey, and the 

plants in the fall and winter provide nectar that yields dark honey (Campbell 2021).  
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Seeley and colleagues conducted a study with over 4,000 Italian honeybees (Apis mellifera 

ligustica) in Ithaca, New York, to evaluate the behavior associated with nectar source 

profitability (Seeley et al. 1991). Profitability includes sugar content, proximity to the hive, and 

quantity and condition of the flowers. Over two 8-hour periods, researchers recorded how 

many workers approached one of two feeders, a feeder with low profitability nectar (low 

sugar), and a feeder with high profitability nectar (high sugar) (Table 1). The researchers studied 

the bees’ behavior as well. When first assessing the two feeders, the same number of bees 

approached and attempted to extract nectar from the feeders. However, as time went on, the 

workers began to increase foraging only at the high profitability nectar feeder, deserting the 

low profitability feeder. To make worthwhile use of the colony’s energies, foragers must 

determine profitability of each nectar source they find and share this information with the rest 

of the colony. This points to the concept of the “supraorganism,” the one large organism (the 

colony) composed of many smaller organisms, the bees. Honeybees work as a collective unit to 

maximize use of energy, offspring yield, and honey yield. Each forager consumes 0.5 mg of 

honey per kilometer she expects to travel (Bibi et al. 2008). Minimizing the cost of this energy 

to obtain the nectar is of utmost importance. Seeley describes the selection of nectar by the 

supraorganism as a naturally selective process with a better outcome (a larger amount of a 

high-quality honey) when more foragers collect nectar from the most profitable source as 

opposed to a less than satisfactory outcome (a smaller amount of low-quality honey) when 

foragers collect form the less profitable source. Seeley and his colleagues concluded there must 

be a component of the bee’s nervous system allowing the worker bees to measure profitability 

of nectar sources while foraging (Seeley et al. 1991). 
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Honey-Making Process 

While humans have harvested honey since ancient times, honeybee colonies have used it to 

nourish their workers to allow them to continue working and performing their daily activities, 

all crucial to the maintenance of the hive. A colony of honeybees consumes about 60 kgs of 

honey annually (Seeley 1991). The process by which honey is made involves the following steps. 

First, the foragers collect nectar, a watery, sweet liquid from various floral sources (Wolfgang 

and Habersack 1998; White and Doner 1980). Nectar fills the crop, or honey stomach, and is the 

honeybees’ main source of carbohydrates (Didaras et al. 2020). Workers store pollen in “pollen 

baskets,” sacs on the back of the legs (Seeley 1991; Wolfgang and Habersack 1998). Worker 

bees from a given colony collect approximately 10-26 kg of pollen per year (Didaras et al. 2020). 

When the foragers return to the hive with full stomachs of nectar and pollen baskets on their 

legs, they pass the pollen to the workers who then add phytocidal acid to prevent germination 

and bacterial growth, and they add hypopharyngeal gland enzymes to prevent fermentation or 

anaerobic metabolism from occurring (Bibi et al. 2008). Then, they bring the nectar up from 

their stomachs into their mouths, and workers extract it with their tongue out of the forager’s 

mouth, add their own enzyme master mix, and regurgitate it into an empty cell. The workers 

fan it dry with their wings to reduce the water content to about 17%, which takes about three 

days (Olaitan et al. 2007; White and Doner 1980). Because nectar has a high moisture, it easily 

spoils; therefore, without dehydrating the nectar, the honey would lose its viscosity and spoil 

(Campbell 2021; White and Doner 1980). Workers then add their enzymes to the nectar and 

allow it to ripen until it thickens into honey. Once ripe, workers excrete wax and cap the honey 

for storage. Without capping the honey, it would absorb water from the air and spoil because 
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of ripened honey’s hygroscopicity (Campbell 2021). From this point on, unless tampered with, 

the honey will never spoil (Wolfgang and Habersack 1998). 

Honeybee Microbiome  

The antimicrobial properties of honey derive from both the nectar source as well as the 

honeybee itself and its enzymes, some of which are produced by the microbiome. Although the 

honeybee gut microbiome is much more simplistic, it parallels the human gut microbiome 

because it is dominated my facultative anaerobes, which make ATP by aerobic respiration in the 

presence of oxygen, but switch to fermentation in the absence of oxygen, and microaerophiles, 

which require lower concentrations of oxygen to grow. Nine core bacterial clusters inhabit the 

gut microbiome of the honeybee, all of which are easily passed from bee to bee by social 

contact and have adapted alongside their hosts for millions of years. Other microbes, such as 

Frischella perrera of the Proteobacteria, are present in much lower concentrations and serve 

little known functional purposes (Kwong and Moran et al. 2016). Of the nine core clusters, 

there are two gram-negative proteobacteria, Snodgrassella alvi and Gilliamella apicola, two 

gram-positive fermentative Firmicute species, Lactobacillus Firm-4 and Lactobacillus Firm-5, 

and the remaining five are Actinobacteria of the species Bifidobacterium asteroides and are 

present in lower populations.  

Much like the human gut, each region of the honeybee’s abdomen (hindgut-ileum, distal 

hindgut-rectum, and midgut) contains different microorganisms aiding the bee in performing its 

daily functions (Kwong and Moran et al. 2016). The midgut, in which food is digested and 

absorbed, does not provide a conducive environment for many microorganisms because the 

lining is shed frequently, and the environment contains enzymes aiding in digestion and 
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nutrient absorption (Ellis 2015). The ileum and rectum form the hindgut and are crucial in water 

and salt absorption prior to excretion (Ellis 2015). The ileum is a tube with six folds teaming 

with S. alvi and G. apicola (Kwong and Moran et al. 2016). The rectum contains fecal matter 

prior to defecation. In the rectum, Lactobacillus Firm-4 and Lactobacillus Firm-5 are the 

dominant species (Kwong and Moran et al. 2016). The queen’s gut is filled with the 

Acetobacteraceae, P. apium and Alpha2, likely due to her difference in diet. P. apium is the only 

known bacteria to be able to flourish in royal jelly (Kwong and Moran et al. 2016).  

The primary benefit of the symbiotic relationship for the bees is that the bacteria work to 

digest the plant carbohydrates the bee is incapable of digesting. This symbiosis works to sustain 

the bee’s own body as well as add to the enzyme secretions injected into nectar to ripen it and 

form sugar-concentrated, antimicrobial honey. Zheng and identified the microbes involved in 

polysaccharide digestion (Zheng et al. 2019). B. asteroides and the Proteobacterium, G. apicola, 

are the primary degraders of hemicellulose and pectin and both have wide-ranging strain 

diversity. Genes in B. asteroides encode for many different carbohydrate-active enzymes, 

CAZymes, that degrade polysaccharides, same as Bacteroides in the human gut (Zheng et al. 

2019). B. asteroides and G. apicola break the bonds in polysaccharides to release sugars, short-

chain fatty acids, that the host can absorb (Zheng et al. 2019). Some of these CAZymes are 

glycoside hydrolase, polysaccharide lyase, carbohydrate esterase, glycosyl transferase, and 

carbohydrate-binding module (Zheng et al. 2019). The honeybee gut microbiota also produce 

amino acids: G. apicola, S. alvi, and B. asteroides are able to produce most of the 20 core amino 

acids. G. apicola and S. alvi also recycle nitrogenous waste, like uric acid and ammonia (Zheng 

et al. 2019). The gut microbiome also differs amongst honeybees based on their jobs. In a study 
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by Kešnerová, winter bees and nursing bees showed the heaviest bacterial loads, while winter 

bees showed the least diversity of gut microbes. Enterobacteriaceae, which ferment sugars, 

were commonly found among nursing bees. Because a worker’s job changes every few days, 

this study suggests that the microbiome readily shifts according to the bee’s new job 

(Kešnerová et al. 2019). 

In his research, Engel and colleagues sequenced the metagenome of the gut microbes and 

realized through comparative analysis of gene contents that highly functional, distinct 

metabolic niches are filled by the core microorganism in the honeybee’s gut (Engel et al. 2012). 

Microbes and their hosts evolved alongside one another in a polysaccharide-rich world where 

plants represent a chief energy source. Honeybees and their microbes live in a codependent 

relationship to utilize the energy the earth offers (Zheng et al. 2019). While relatively little is 

known about the bee gut microbiome and the interaction between it and its host, it is an active 

area of research (Kwong and Moran et al. 2016).  

Chemical Properties of Honey 

Phytochemicals in Honey 

 Multifloral honey is among the most common types of honey and is a likely honey seen 

in the grocery store (Campbell 2021). There are 180 compounds in honey, from water to sugars 

to many phytochemicals to free amino acids, proteins, enzymes, vitamins, and minerals 

(Ciancosi et al. 2018). Phytochemicals, so called plant components with discreet bio-activities…. 

or non-peroxide antimicrobial factors, are secondary metabolites produced by bacteria that are 

responsible for honey’s flavor, color, and antimicrobial properties (Dillon and German 2002; 

Manyi-Loh et al. 2011). Because phytochemicals determine a large aspect of the nectar’s 
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contribution to the antimicrobial properties of honey, plants from different locations with 

varying climates and soils affects the antimicrobial power of a honey type (Table 1). 

Phytochemicals include three subdivisions: carbohydrates, phenolic compounds, and volatile 

organic compounds (VOCs) (Fig. 2)(Manyi-Loh et al. 2011).  

Carbohydrates  

Carbohydrates are the primary component of honey, comprising 95% of honey’s dry 

mass.  Dextrose (glucose) and levulose (fructose), both monosaccharides, are the two dominant 

sugars in honey. The following ten disaccharides have also been found in honey: sucrose, 

maltose, isomaltose, maltulose, nigerose, turanose, kojibiose, laminaribiose, a, B-trehalose, and 

gentiobiose (White and Doner 1980).  In addition, the following ten trisaccharides have been 

found in honey: melezitose, 3-aisomaltosylglucose, maltotriose, l-kestose, panose, 

isomaltotriose, erlose, theanderose, centose, and isopanose (White and Doner 1980). The only 

two polysaccharides found in honey are isomaltotetraose and isomaltopentaose (White and 

Doner 1980). Aside from dextrose and levulose, the sugars beyond the complexity level of 

monosaccharides are present in minute amounts; however, all sugars must be converted to 

monosaccharides by the bee’s enzymes. None of the above sugars, with the exception of 

sucrose, are present in nectar; they arise as a result of the enzymatic breakdown of the 

complex sugars into monosaccharides. Therefore, the higher the sugar content, the greater the 

enzymatic activity because more enzymes need to be produced to metabolize these sugars 

(Olaitan et al. 2007; White and Doner 1980). Here, profitability of nectar source in relation to 

sugar contents contributes to the formation of antimicrobial-rich honey. According to Masoura, 

honey with a sugar content of 80% or greater is considered bactericidal because lower 
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concentrations of 40% or less have been found to break down saccharides to form 

monosaccharides and further lactate (Masoura et al. 2020). This is why sugars counteract the 

effect of acid/oxidative stress. However, it has been found that sugars at a concentration up to 

50% decreased cell size dramatically due to plasmolysis and osmotic stress, which cause the 

inner and outer membrane of the bacterial cell to separate and the cell to collapse; however, 

cell growth is not inhibited. This suggests that sugars may contribute to the antibacterial effect 

by altering the physiology of cells (Table 1). Sugars, however, moderate the toxicity caused by 

the gluconic acid and H2O2 (Masoura et al. 2020).  

Phenolics 

Honey contains much more than its easily detectable sugar content. Phenolic 

compounds (polyphenols) are abundant in pollen (Didaras et al. 2020). Polyphenols are deemed 

either flavonoids (including flavanols, chalcones, isoflavovones, flavonols, flavones, flavanones, 

and anthocyanidin) or non-flavonoids (phenolic acids) (Ciancosi et al. 2018). Non-flavanoids 

consist of one benzene ring whereas flavonoids are water-soluble and consist of two benzene 

rings with a linear chain of three carbon atoms, but this structure generally shifts to form three 

rings with 15 carbons (Ciancosi et al. 2018; Li and Duan 2018). Some flavonoids honey 

commonly contains are catechin, pigenin, pinocembrin, genistein, chrysin, pinobanksin, 

quercetin, luteolin, galangin, and kaemferol (Ciancosi et al. 2018). Some phenolic acids honey 

contains are ferulic, gallic, syringic, p-Coumaric, vallinic, caffeic,4-(Diethylamino) benzoic, 

chlorogenic, and ellagic acids (Ciancosi et al. 2018). The darker the honey, the more phenolic 

compounds, and therefore, the more antimicrobial activity (Estivinho et al. 2008).  
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Volatile Organic Compounds  

Manyi-Loh considers VOCs fingerprints of honey used to determine if the honey is unifloral 

or multifloral as well as its geographical location (Manyi-Loh et al. 2011). VOCs are subdivided 

into aldehydes, ketones, acids, alcohols, hydrocarbons, norisoprenoids, terpenes, and benzenes 

(da Silva et al. 2016; Manyi-Loh et al. 2011). More than 600 VOCs have been identified in low 

concentration in common honey (Hawkins 2015). An important VOC in Manuka honey is 

methylglyoxal, which is a 1,2-dicarbonyl compound responsible for this particular type of honey 

being antimicrobial (Manyi-Loh et al. 2011; Mavric et al. 2008; Nolan et al. 2019)(Table 1). 

Methylglyoxal is an aldehyde that arises non-enzymatically when methylglyoxal synthase 

converts dihydroxyacetone-phosphate in the Manuka tree (Leptospermum scoparium) into 

methylglyoxal (Nolan et al. 2019). Manuka honey is viewed as one of, if not the most, 

antimicrobial honey on the market, and because of this, it is very expensive to purchase (Nolan 

et al. 2019). According to Carter, methylglyoxal operates against pathogens in a non-specific 

manor by reacting with the pathogen’s macromolecules like DNA and RNA (Carter et al. 2016). 

For this reason, it was thought that methylglyoxal might be harmful to eukaryotic cells, but it is 

not (Carter et al. 2016). However, according to Rabie and colleagues, methylglyoxal has the 

capacity to alter fimbriae and flagella of bacterial cells, limiting their motility and therefore 

decreasing growth (Rabie et al. 2016). 

Acids 

Acids are not phytochemicals; rather, they result from the enzymatic breakdown of 

sugar into monosaccharides. Glucose oxidase produces gluconic acid upon the metabolism of 

dextrose. Gluconic acid, the predominant acid in honey, is a driving force in the low pH of 
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honey, which also contributes to its antimicrobial effects (Table 1). The pH of honey ranges 

from an acidic 3.2 to 4.5, which can deter the growth of certain groups of microorganisms (da 

Silva et al 2016) (Table 1). Sugar and gluconic acid have a direct positive relationship, so that 

when the sugar concentration of honey increases, so does the concentration of gluconic acid. 

Additional acids in honey include formic, acetic, butyric, lactic, oxalic, succinic, tartaric, maleic, 

pyruvic, pyroglutamic, a-ketoglutaric, glycollic, citric, malic, 2- or 3- phosphoglyceric acid, a- or 

B-glycerophosphate, and glucose 6-phosphate (White and Doner 1980). When humans harvest 

honey and process it to stabilize it and sell it, heating is involved to rid the honey of any harmful 

microorganisms. However, heating honey denatures the enzymes, leading to a decreased 

antimicrobial effect (White and Doner 1980).  

Bee-defensin and H2O2 

 Bee-defensin and hydrogen peroxide do not belong in any of the above chemical 

categories, yet they are both crucial to the antimicrobial activities in honey (Table 1). Bee-

defensin is an antimicrobial peptide secreted by the hypopharyngeal glands of the honeybee 

and found in the bee’s hemolymph (blood). Bee-defensin acts by producing proteins that create 

a pore on a bacterial cell’s surface and cause apoptosis by inhibiting transcription and 

translation of proteins. According to Nolan and colleagues, bee-defensin is most effective 

against gram-positive bacteria like Staphylococcus aureus (Nolan et al. 2019). However, 

Masoura and colleagues state that at a concentration of 0.5 μg/ml or greater, bee-defensin 

combats both gram-positive and gram-negative bacteria (Masoura et al. 2020). The quantity of 

bee-defensin depends on the activity of the bee’s hypopharyngeal glands. Both methylglyoxal 

and bee-defensin inhibit the formation of biofilms (Nolan et al. 2019).  
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When a worker collects nectar, she adds three enzymes: invertase, diastase, and glucose 

oxidase (Nolan et al. 2019). The nectar contains plant sucrose. Invertase, also called sucrase, 

breaks down sucrose into dextrose and levulose while diastase hydrolyzes starch to produce 

dextrin and β-amylases which pave the way for maltose formation (Ciancosi et al. 2018; White 

and Doner 1980). In short, invertase and diastase convert sucrose from the nectar into fructose 

and glucose, allowing glucose oxidase to oxidize glucose once oxygen is added. The byproducts 

of this are D-glucono-δ-lactone and hydrogen peroxide (Nolan et al. 2019). Hydrogen peroxide 

is a weak acid, but it has been called the most known inhibine by Mavric because it inhibits the 

growth of microbes (Campbell 2021; Mavric 2008). Hydrogen peroxide is referred to as an 

oxidative biocide because it oxidizes chemicals in honey, inhibiting bacterial growth and 

irreversibly damaging bacterial DNA by producing hydroxyl radicals. In a study conducted by 

Masoura and colleagues, the synergy of hydrogen peroxide and gluconic acid led to rapid 

depolarization of Escherichia coli’s cell membrane, followed by apoptosis and overall growth 

inhibition (Masoura et al. 2020). Typically, hydrogen peroxide concentration in honey varies 

depending on glucose oxidase added by the worker bee and the pollen-derived catalase; these 

two components depend on bee health and diversity in the bee’s diet, meaning the pollen and 

nectar (Nolan et al. 2019). Low concentrations of hydrogen peroxide only caused transient 

depolarization of the membrane, and the bacterial cells did not suffer. The concentration of 

hydrogen peroxide in honey is antimicrobial even though it is 900 times smaller than the 

concentration humans use to cleanse wounds. Polyphenol compounds in honey can directly 

produce hydrogen peroxide or reduce Fe (III) to Fe (II), which excites hydrogen peroxide 

production (Masoura et al. 2020). Also, upon dilution, the antimicrobial activity in honey 
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increases because glucose oxidase can bind glucose much more readily, leading to continuous 

hydrogen peroxide production (Nolan et al. 2019).  

Antimicrobial Activity of Honey Against Pathogens 

The Variety of Microbes Honey Combats  

In 1892, the first observation of the antimicrobial properties of honey was made using 

the following gram-positive and gram-negative organisms: E. coli, Pseudomonas aeruginosa, 

Klebsiella pneumoniae, S. aureus, Bacillus subtilis, and Listeria monocytogens (Nolan et al. 

2019). Olaitan and colleagues found that E. coli, Vibrio cholrae, Yersinia enterocolitica, 

Plesiomonas shigelloides, Aeromonas hydrophila, Salmonella typhi, Shigella boydi, and 

Clostridium jejuni populations could be inhibited at or above a honey concentration of 50% 

(Olaitan et al. 2007) (Table 2). Honey research has only recently begun to skyrocket because of 

the abundance of antibiotic-resistant pathogens. Multiple drug resistant pathogens have finally 

been defeated by honey or by the synergy of drugs and honey. For example, S. aureus and 

MRSA were both eradicated by oxacillin-honey. Any attempts at recreating a pathogenic strain 

resistant to honey have failed (Carter et al. 2016). Honey has been found to inhibit planktonic 

cells, yeasts, viruses, and bacteria. Over 60 bacterial species have been shown to be sensitive to 

honey, which changes shape of and shrinks the cell (Table 1) (Carter et al. 2016; Olaitan et al. 

2007). Some yeast can live in honey diluted with water and cause spoiling of the honey through 

fermentation. Candida albicans, Clostridum oedemantiens, Aspergillus spp., and Penicillium spp. 

can be killed by honey, but in the microsporidian Nosema apis, only decreased spore viability 

has been documented (Carter et al. 2016; Olaitan et al. 2007).  
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P. aeruginosa is a common agent in infected wounds, but honey has completely eradicated the 

infection in studies, allowing skin grafting to occur (Olaitan et al. 2007). Particular genes 

involving virulence, quorum sensing, and formation of biofilms are down-regulated upon 

administration of honey. Honey causes down-regulation of flagellation proteins in P. 

aeruginosa. Flagellation normally allows P. aeruginosa to travel and cause an invasive infection 

(Carter et al. 2016). Prior to treatment, Olaitan recommends a swab of the infected wound to 

allow pathologists to identify the pathogens and test their susceptibility to honey (Olaitan et al. 

2007).  

Manuka Honey vs. Tualang Honey as Antibacterial Agents 

Manuka honey and Tualang honey have been revered as the most potent of honeys, with 

regard to their strong antimicrobial properties. Manuka honey is made from the nectar of the 

Manuka Tree (Leptospermum scoparium) in New Zealand and Australia. In the 1980s at Waikato 

University in New Zealand, professor Molan was the first person to question and study Manuka 

honey’s potential health benefits while testing it against many bacterial species. Even he did 

not realize that low concentrations of Manuka honey still act as powerful antimicrobial agents 

(Carter et al. 2016). An additional key component of any honey in healing wounds is that its 

viscosity and hygroscopicity keep the wound moist, while also killing pathogens (Campbell 

2021).  

Manuka honey is different from common multifloral honey because it is a non-peroxide 

honey, meaning hydrogen peroxide is not the primary source of its antimicrobial activity. In 

2008, it was discovered that methylglyoxal, however, is the source of Manuka honey’s 

antimicrobial activity (Carter et al. 2016). The pH of Manuka honey ranges from 3.2 to 4.21, and 
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it is light brown in color (Ahmed and Othman 2013). Methylglyoxal is present in multifloral 

honey but in much smaller concentrations. In a study conducted by Mavric and colleagues, it 

was discovered that methylglyoxal concentrations were 100 times higher in Manuka honey 

than multifloral honey (Mavric et al. 2008). Because of this, Manuka honey was officially 

registered with a medical governing body in New Zealand as a medicinal product (Carter et al. 

2016). Manuka honey has been studied as a possible treatment for the flu as well as chicken 

pox and shingles, which are caused by the varicella-zoster virus (Carter et al. 2016). MRSA has 

been shown to cease growth with the synergistic use of Manuka honey and the antibiotics 

oxacillin, tetracycline, imipenem and mupirocin (Carter et al. 2016).  

In other cases, doctors used Manuka honey as a last resort once antibiotics did not 

eradicate infection, and those patients successfully healed. Veterinarians have begun using 

Manuka honey on animal wounds and on dressings post-surgery as well (Carter et al. 2016). 

Cooper and fellow researchers conducted a study on 58 strains of coagulase-positive S. aureus, 

the most pathogenic strain of this organism. Some of these samples from infected surface 

lacerations were treated with Manuka honey while others were treated with pasture honey, 

commonly multifloral honey. Minimum inhibitory concentrations (MICs) ranged from 2% to 3% 

for Manuka honey treatment and 3% to 4% for pasture honey treatment; therefore, Manuka 

honey did not show preferential healing compared to the multifloral honey. The MICs revealed 

both honeys’ capability of preventing growth of S. aureus, even upon dilution by bodily fluids 

up to 14 times past the point at which osmolarity halts inhibition (Cooper et al. 1999). A 

recently studied multispecies biofilm revealed the only known pathogen Manuka honey cannot 

kill or inhibit is Enterococcus faecalis (Carter et al. 2016).  
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 Rock bees (Apis dorsata) produce unifloral, deep brown Tualang honey from the nectar 

of the Tualang tree (Kompassia excelsa) in the northwestern area of the peninsula of Malaysia. 

The Tualang tree grows in the rainforest and can reach 250 feet with honeycombs 6 feet long 

and over 30,000 honeybees. The pH of this honey is 3.55 to 4.21, very similar to the pH of 

Manuka honey. While Manuka honey’s antibacterial strength lies in its methylglyoxal 

concentration, Tualang honey’s antibacterial strength is its increased concentration of phenolic 

acids and flavonoids. Tualang honey is slightly more bactericidal than Manuka honey, especially 

against gram-negative bacteria (Table 2). In fact, medical professionals who have used Tualang 

honey to dress infected wounds have found it to be very effective at inhibiting the growth of P. 

aeruginosa, Acinetobacter baumannii, and K. pneumoniae, all gram-negative species. In third-

degree burns, hydrofibre silver gel is usually used with wound dressings; however, 32.26% of 

wounds dressed with Tualang honey decreased significantly in size because the honey triggers 

fibroblast and epithelial cell renewal (Ahmed and Othman 2013).  

Rationale for Project and Goals 

According to the Virginia State Beekeepers’ Association, there are approximately 20 

beekeeper organizations in southwest Virginia. The present study was designed to assay the 

antimicrobial properties of honey from southwest Virginia. The chemical properties from the 

nectar source, the enzymes produced by the bee itself, and the processing of the nectar source 

by the bee gut microbiome all contribute to the antimicrobial activity of honey. Because of this, 

a three-part study (Fig. 3) was designed to determine the antimicrobial properties of multifloral 

honey in southwestern Virginia. First, spring and fall honey from four sites were collected in 

2021 and assayed for antimicrobial properties against the ESKAPE pathogens using a disc 
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diffusion assay. ESKAPE pathogens (Escherichia coli, Staphylococcus aureus, Klebsiella 

Pneumoniae, Acinetobacter Baumannii, Pseudomonas aeruginosa, Enterococcus faecium) are 

common opportunistic human pathogens and have been used in many disk diffusion assay 

studies (Antonova et al. 2019; Hijazi et al. 2018; Fleeman et al. 2015). In order to determine the 

foraging sources of the bees, honey and pollen pellets were processed and examined by 

microscopy to identify the pollen varieties found in each sample. Finally, the bee gut 

microbiome was characterized from each site using culture-dependent assays.  

Materials and Methods 

Site Description 

  In fall 2021, samples of honey were collected from different regions of Southwestern 

Virginia (Fig. 4). The Fincastle site (Fig. 5A) was visited in the late afternoon. The Fincastle 

beekeeper, Mr. Williams, reported that he has had his most stable hives for about four years. 

He evaluates hive health weekly and reported that he was treating for varroa mites (Varroa 

destructor) with 99.6% oxalic acid at the time of sample collection. He had treated for varroa 

three times total since 2018. Varroa mites feed on the bees, eventually killing them; these 

mites destroy hives if not treated (Locke 2017). He did not introduce plants to any area 

specifically to provide foraging sources. Mr. Williams collects spring honey from his hives in July 

for sale and personal use. He does not supplement with pollen patties or sucrose.  

The Covington site (Fig. 5B) was visited in late afternoon. The Covington beekeeper, Mr. 

Wright, reported that he has had his most stable hives for about thirteen years. He evaluates 

hive health weekly and has never needed to treat his hives for varroa mites. He does not 

supplement with pollen patties of sucrose and has not introduced plants to any area specifically 
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to provide foraging sources. Mr. Wright collects spring honey from his hives toward the end of 

June or beginning of July for sale and personal use.  

The Trouville site (Fig. 5C) was visited in the afternoon. The Trouville beekeeper, Mr. 

Wolfe, reported that he has had his most stable hives for about forty years, since the 1980s. He 

evaluates hive health every three weeks (the worker bee gestation period). After July 10th when 

spring honey is drained off for sale and personal use, Mr. Wolfe performs three-week cycles of 

varroa mite treatment with 99.6% oxalic acid. He treats for three weeks then allows the hives 

three weeks to adjust then treats again. He does not supplement with pollen paddies of 

sucrose. He has introduced fields of wildflowers to his property specifically to provide foraging 

sources. He performs prescribed burns every three years as well.  

The Martinsville site (Fig. 5D) was visited in the morning. The Martinsville beekeeper, 

Mr. Whitlock, reported that he has had his most stable hives for approximately three years. He 

evaluates hive health every two weeks (the worker bee gestation period). Annually, Mr. 

Whitlock treats for varroa mites the entire month of August with 100% oxalic acid. His hives 

also had hive beetles (Aethina tumida) for which he does not treat; he simply allows the bees to 

drive the beetles to the top of the hive. Hive beetles have been referred to as minor pests, not 

nearly as serious as varroa mites (Neumann 2016). He harvests spring honey for sale and 

personal use in July. He was the only beekeeper to supplement with pollen patties, as well as 

2:1 sucrose syrup in water (v/v). He has not introduced plants to the area specifically to provide 

foraging sources. He performs prescribed burns every three years as well.  

Sample Collection  
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Honeybee farmers from each location provided 8-12 oz samples of honey obtained in 

July, representing spring honey samples since the honey was cumulatively produced over the 

entire spring season. When beekeepers harvest honey in the beginning of summer, they use 

that honey for sale and personal use since it is believed to have more floral diversity and better 

taste (personal communication with beekeepers). For the fall honey samples, honey was freshly 

collected in either September or October by scraping the honeycomb into a large plastic bowl 

and allowing the honey to drain off the comb through a sieve (Fig. 6).  

In order to collect the honeybees, the beekeeper removed a frame with many worker 

bees on it, and approximately 30-40 bees were brushed into plastic vials (with a leather gloved 

hand). The vials were quickly capped with a sponge, and the vials were placed in a cooler and 

buried with ice up to the sponge top in order to sedate the bees and keep them docile during 

transportation back to the laboratory. Then, each bee was placed in its own capped vial and 

placed in a freezer at -15˚C until needed for gut dissection. The bees remained refrigerated for 

three months until dissections were performed in January 2022. 

In addition to the collection of fall and spring honey at each site, pollen pellets were 

collected for species identification. While honey contains pollen that can be analyzed, using 

pollen pellets allowed for a direct analysis of the plants bees in particular areas are foraging on 

in a more concentrated sample. Pollen pellet samples were collected by using a pollen trap 

(shown attached to a hive in Fig. 5B). The pollen trap was placed at the entrance of the hive, 

secured with lab tape, and left for half an hour or so or until the necessary amount of pollen 

pellets were collected. As the bees fly through the trap, the pollen pellets get scraped off of 

their hind legs, forelegs, and middle legs and deposited in the collection tray. Once five to ten 
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pollen pellets were collected, the pollen trap was removed, and the pellets were placed in a 

single collection tube labeled with the specific farm from which the pollen came. The tubes 

were placed in a cooler with ice, along with the bees, to be transported back to the laboratory. 

The tubes were placed in the freezer at -15˚C to prevent growth of any fungi that might have 

been associated with the sample.  

Antimicrobial Assays 

Assays to determine what honey concentration to use with ESKAPE pathogens. 

Samples of Manuka honey were diluted to different honey concentrations to determine 

which single concentration was best to test for the antimicrobial assay. Manuka honey was 

used for these assays because it is known to be one of, if not the strongest, antimicrobial 

honeys on the market due to its methylglyoxal content, a volatile organic compound (1,2-

dicarbonyl) (Nolan et al. 2019). Methylglyoxal is an aldehyde that arises non-enzymatically 

when methylglyoxal synthase converts dihydroxyacetone-phosphate in the Manuka tree into 

methylglyoxal (Nolan et al. 2019). One honey sample was diluted to 30% (30 mL honey: 70 mL 

deionized water), one to 50% (50 mL honey: 50 mL deionized water), and one to 70% (70 mL 

honey: 30 mL deionized water). A full concentration (100%) sample was also used for the 

assays. The dilutions were refrigerated until needed. To create each dilution, the desired 

amount of honey and water were poured into a 50 mL falcon tube and was taped onto a 

nutator overnight to mix thoroughly. When ready to be used, the honey dilutions were 

removed from the refrigerator and heated by placing the 50 mL falcon tube and placed in a 

40˚C water bath for approximately 15 minutes or until the honey became less viscous and could 

be filtered via syringe filtration to eliminate pathogens (Hamden 2010). This temperature was 
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not high enough to denature any bioactive enzymes that may have antimicrobial properties in 

the honey (Subramanian et al. 2007). Once removed from the water, the dilutions were left to 

return to room temperature prior to dipping the disks.  

Staphylococcus aureus and E. coli were the two pathogens used to test the 

concentration of the honey to be used in the antimicrobial assays (Al-Waili et al. 2011).  

S. aureus was chosen to represent the gram positive ESKAPE pathogens, and E. coli was chosen 

to represent the gram negative ESKAPE pathogens. Mueller-Hinton agar was poured into the 

petri dish to a depth of 4 mm in 100 mL (or 150 mL) petri dishes. Cultures were incubated 

overnight and then diluted to match a 0.5 McFarland turbidity standard. Each pathogen was 

transferred to a plate, pipetting 100 µL of each pathogen onto its own plate and using a 

spreader for even distribution. The disks (n=9) that had been soaking in a particular honey for 

two minutes were gently placed onto the plate to ensure full contact with the pathogen. Each 

plate contained three honey-soaked disks, and a plate for each pathogen was created with 

three control disks soaked in sterile, deionized water for two minutes. Three replicates per 

culture per honey type were plated in addition to a control for each pathogen. The plates were 

inverted and incubated at 40˚C for 16-18 hours. When the plates were removed from the 

incubator, zones of inhibition were measured in millimeters using a ruler, and organized in a 

chart according to honey dilution the disks had soaked in as well as the pathogen by which the 

disks were surrounded. Entire zones of inhibition, including the disk, the clear zone around the 

disk if applicable, and the diffuse halo (i.e. the cloudy, visibly distinct area of reduced bacterial 

growth compared to the control), were measured and recorded (Fig. 7). It is possible that the 

diffuse halo was produced by a chemical in the honey interacting with the media to produce 
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the color change, as we did not confirm that it consisted of bacterial growth. To test this in 

future studies, disks soaked in the honey could be plated with no bacteria spread on the plate. 

If a diffuse halo is produced, this would mean there is likely a chemical present in the honey 

causing the growth media to alter in appearance. SigmaPlot version 14.5 (Systat, Palo Alto, CA) 

was used to test for significant differences in assay response among spring and fall honeys from 

each sample location, as well as Manuka honey (positive control), deionized water (negative 

control), and tetracycline (positive control). No statistical difference was found between the 

30% and 50% dilutions or between the 70% and 100% dilutions; however, there was a 

significant difference (P= 0.001) between the 30% and 50% dilutions and the 70% and 100% 

dilutions. Because of this, a 70% dilution was used for subsequent assays to reduce viscosity for 

filter sterilization.  

Antimicrobial properties of summer and fall honey against ESKAPE pathogens 

Summer and fall honey from each site were tested for antimicrobial activity using the 

same disk diffusion assay as described in the previous section. In these assays, the honey was 

tested for its efficacy against all six ESKAPE pathogens: E. faecium (Presque Isle Cultures® 524™), 

S. aureus (Presque Isle Cultures® 4651™), Klebsiella pneumoniae (Presque Isle Cultures® 344™), 

A. baumannii Bouvet and Grimont (American Type Culture Collection® 19606™), P. aeruginosa 

(Presque Isle Cultures® 99™), and E. coli (Presque Isle Cultures® 336™) as the representative 

Enterobacter (De Oliveira et al. 2020). Twenty-four hours in advance, broth cultures of each of 

the six ESKAPE pathogens were inoculated, incubated overnight, and then diluted to match a 

0.5 McFarland turbidity standard. One hundred μL of each pathogen was transferred to a plate 

and spread for even distribution. The disks that had been soaking in a particular honey for two 
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minutes were gently placed onto the plate to ensure full contact with the pathogen. Each plate 

contained three honey-soaked disks, and a plate for each pathogen was created with three 

control disks soaked in deionized water for two minutes. Three replicates per culture per honey 

type were plated in addition to a control for each pathogen. Seventy precent Manuka honey 

plates were used as a positive control; the negative control was plates with disks that were 

soaked in sterile, deionized water. The plates were inverted and incubated at 40˚C for 16-18 

hours. When the plates were removed from the incubator, zones of inhibition were measured 

as above, and organized in a chart according to honey type the disks had soaked in as well as 

the pathogen by which the disks were surrounded. Lastly, the pH of each 70% dilution of honey 

was measured and recorded using EMD colorpHast pH strips (pH 2.0-9.0) (Gibbstown, New 

Jersey) because honey’s low pH plays a role in defense against pathogens (da Silva et al 2016). 

Pollen Analysis  

The spring honey and fall pollen pellet samples were collected and then shipped to 

Global Geolab Limited (Alberta, Canada) laboratory for processing following their standard 

protocols for pollen pellets and honey, respectively, and then sent directly to Dr. Sophie Warny 

at Louisiana State University for palynology analysis and identification via microscopy. 

Palynological analysis was conducted on using an Olympus BX41 microscope. 

Microphotographs were taken with an Olympus QColor5 mounted digital camera. First, the 

samples were scanned using a 40x objective making initial identifications of each pollen type 

and taking photographic images of unknown pollen types. In making quantitative counts, each 

pollen type was identified to the family, genus, or in some cases species level. Second, a 

quantitative pollen count for each sample was conducted to determine the pollen types 
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present and the frequency of each taxon using both 60x and 100x oil immersion objectives. 

Statistically valid quantitative pollen count of a minimum of 300 pollen grains per sample were 

used.  

Honeybee Gut Dissection and Culture-Dependent Identification of the Bee Gut Community 

 Honeybees (n = 8 per location) were dissected, and their gastrointestinal microflora was 

cultivated using the following procedure. To dissect the honeybee, the bases of the wings were 

pinned to the paraffin wax in a glass petri dish. The paraffin wax filled the petri dish halfway. 

The petri dish was set on a small ice pack that had been wrapped in one layer of paper towel to 

preserve the microbial communities in the gut. The wings and legs were first removed with 

forceps. Forceps, previously sterilized with 70% ethanol, were used to gently pinch the tip of 

the abdomen, where the stinger is located, until the rectum and ileum came out, followed by 

the midgut and crop. If needed, an additional pin was used to pin the abdominal exoskeleton. 

The digestive tract was laid out in a straight line on the wax in the petri dish, and the midgut 

and hindgut were cut and separated from one another. Each of the three gut sections was 

placed into its own separate falcon tubes with sterile broth media. The four media used were 

brain heart infusion (BHI), tryptic soy agar (TSA), Colombia agar with 5% defibrinated sheep’s 

blood, and sugar water [50% sucrose in deionized water (v/v)] (Romero et al. 2019). The liquid 

broth of each media containing sections of the bee gut were vortexed for a couple minutes. 

Then, 300 µL were dispensed onto plates with plated media of each of the three media types 

and spread to cover the entire plate. The plates were incubated for 24 hours at 40˚C. Since the 

cultures grew very well in three of the media (TSA, Colombia agar with 5% defibrinated sheep’s 

blood, and BHI), serial dilutions were performed to allow distinct colonies to grow instead of 
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lawns when plated. Dilutions of 10-6 and 10-7 were used to plate. When morphologically distinct 

colonies could be visualized, a sterile loop was used to transfer the growing colonies to fresh 

plates of the three media types to streak for isolation. A gram stain was then performed on 

each isolate.  

Identification of isolates by the 16S rRNA gene sequence 

Isolates were grouped by morphotype, and a representative isolate for each 

morphotype was chosen for 16S rRNA gene sequencing. A fresh broth culture of each culture 

was inoculated and grown in the incubator overnight. For each isolate, genomic DNA extraction 

and preparation for sequencing were conducted following a modified bead beating protocol 

with the Fast DNA Spin Kit for Soil (MP Biomedicals, Solon, OH). The concentration of extracted 

DNA was determined using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, 

MA). The isolates were prepared for PCR amplification in duplicate using PCR Master Mix (2X) 

(Thermo Fisher Scientific, Waltham, MA) and custom sequencing primers (Integrated DNA 

Technologies, Coralville, IA), the forward primer 27F 5’-AGAGTTTGATCMTGGCTCAG-3’ (Lane 

1991) and the reverse primer 1492 rM 5’-RGYTACCTTGTTACGACTT-3’ (Emerson and Moyer 

2002). Five ng µL-1 of DNA was used for each PCR reaction. The samples were placed in the 

thermocycler for PCR amplification using the following protocol: an initial denaturation of 95˚C 

for 10 min, followed by 30 cycles of 94˚C for 1 min, 55˚C for 90 sec, 72˚C for 3 min, and a final 

extension of 72˚C for 7 min following Carmichael et al. (2013). Gel electrophoresis was used to 

confirm amplification of the 16S rRNA gene sequencing using 2% ultrapure agarose with SYBR 

Safe DNA Stain in 1X TAE running buffer. Following confirmation of amplification, the 1500kb 

long 16S rRNA gene, a QIAquick PCR Purification Kit (Qiagen, Valencia, CA) was used to purify 
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the PCR products for Sanger sequencing. Bi-directional sequencing of each isolate was 

performed at Eurofins Scientific (location). Sequencher (GeneCodes, Ann Arbor, MI) was used 

to build and edit contiguous sequences from the forward and reverse sequences of each 

isolate. The edited sequences were identified using NCBI BLAST. Statistical Analyses 

 All statistical analyses were conducted using SigmaPlot version 14.5 (Systat, Palo Alto, 

CA). Analysis of variance (ANOVA) was used to test for significant differences (p <0.05) among 

honey dilutions in order to determine which concentration of honey to use for experimental 

assays. When assumptions for normality were not met, a non-parametric equivalent was used. 

When significant differences were found, appropriate pairwise comparisons were completed. A 

similar procedure was used to 1) test for significant differences among deionized water, 

Tetracycline, and fall, spring, and Manuka honey at each site and 2) test for differences in 

antimicrobial properties across sites both seasonally and over the course of the growing 

season. 

 

 

 

 

Results  

Antimicrobial Assays 

pH 
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Among all spring and fall honey, Troutville spring honey had the lowest pH (3.8), 

followed by Fincastle fall and Covington spring honey (4.0). Covington fall, Fincastle spring, 

Martinsville spring, and Martinsville fall all had a pH of 4.3. Troutville fall honey acidity was 4.5. 

Positive and Negative Controls 

 Disks soaked in deionized water (the negative control), all showed no zones of inhibition 

(hereafter, ZOI); all honey and Tetracycline (positive control) produced ZOI. A majority of 

Tetracycline disks showed significantly larger mean ZOI than manuka honey and spring and fall 

sample site honey (P<0.05) (Figs. 8 and 9). However, in the Martinsville honey test group, 

Tetracycline mean ZOI was significantly lower than all honey samples in E. coli and A. baumannii 

plates (Fig. 8D).  

Comparison of Manuka Honey to Fall and Spring Honey at Each Site  

Fincastle  

For E. coli, the mean ZOI of manuka honey (22.67 ± 2.40 mm) was significantly larger 

(P<0.001) than the mean ZOI for spring honey (13.00 ± 2.05 mm). The mean ZOI of manuka 

honey was significantly larger (P<0.001) than fall honey mean ZOI (14.50 ± 1.00 mm) (Fig. 8A). 

In K. pneumoniae, the mean ZOI of fall honey (20.39 ± 1.69 mm) was significantly larger 

(P=0.020) than the mean ZOI manuka honey (17.39 ± 2.71) (Fig. 8A). In S. aureus, the mean ZOI 

of spring honey (20.22 ± 3.77 mm) was significantly larger (P=0.001) than the mean ZOI for 

manuka honey (15.83 ± 1.54 mm) (Fig. 8A). In A. baumannii, the mean ZOI of fall honey (14.78 ± 

2.68 mm) was significantly larger (P=0.013) than the mean ZOI for fall honey (11.89 ± 0.74 mm). 

The mean ZOI for spring honey (14.06 ± 1.29 mm) was also significantly larger (P=0.015) than 
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the mean ZOI for manuka honey (Fig. 8A). All other comparisons between fall, spring, and 

manuka honey were not significantly different (P>0.05). 

Covington 

For E. coli, the mean ZOI for fall honey (23.61 ± 3.86 mm) was significantly larger 

(P=0.004) than the mean ZOI for manuka honey (14.22 ± 1.18 mm). In S. aureus, all pairwise 

comparisons were significant (P<0.05). The mean ZOI for fall honey (25.00 ± 1.32 mm) was 

significantly larger (P<0.001) than the mean ZOI for manuka honey (15.50 ± 3.22 mm). In 

addition, the mean ZOI for spring honey (18.17 ± 2.74 mm) was significantly larger (P=0.041) 

than the mean ZOI for manuka honey (Fig. 8B). All other comparisons between fall, spring, and 

manuka honey were not significantly different (P>0.05). 

Troutville  

In E. faecium, the mean ZOI for fall honey (24.00 ± 3.12 mm) was significantly larger 

(P=0.034) than the mean ZOI for manuka honey (18.22 ± 5.84 mm) (Fig. 8C). In S. aureus, the 

mean ZOI for manuka (24.22 ± 4.58 mm) was significantly larger (P=0.013) than the spring 

honey mean ZOI (19.33 ± 2.87) (Fig. 8C). In A. baumannii, all pairwise comparisons were 

significant (P<0.05). The mean ZOI for manuka honey was the largest (19.61 ± 3.13 mm), 

followed by fall mean ZOI (15.67 ± 1.75 mm), then spring mean ZOI (13.17 ± 1.54 mm) (Fig. 8C). 

In K. pneumoniae, the mean ZOI of manuka honey (20.44 ± 2.24 mm) was significantly larger 

(P=0.021) than the mean ZOI for spring honey (16.22 ± 3.54 mm) (Fig. 8C). All other 

comparisons between fall, spring, and manuka honey were not significantly different (P>0.05). 

Martinsville  
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In E. faecium, the mean ZOI for spring honey (10.72 ± 1.25 mm) was significantly larger 

(P=0.03) than the mean ZOI for manuka honey (8.94 ±1.45 mm) (Fig. 8D). All other comparisons 

between fall, spring, and manuka honey were not significantly different (P>0.05). 

Comparison of Fall and Spring Honey at Each Site  

 Fincastle 

 In S. aureus, the mean ZOI for spring honey (20.22 ± 3.77 mm) was significantly larger 

(P=0.017) than the mean ZOI for fall honey (16.56 ± 0.73 mm). In K. pneumoniae, the mean ZOI 

for fall honey (20.39 ± 1.69 mm) was significantly larger (P<0.001) than the mean ZOI for spring 

honey (15.33 ± 2.29 mm) (Fig. 8A). All other comparisons between spring and fall honey were 

not significantly different (P>0.05). 

 Covington 

 In S. aureus, the mean ZOI for fall honey (25.00 ± 1.32 mm) was significantly larger 

(P<0.001) than the mean ZOI for spring honey (18.17 ± 2.74 mm). In E. faecium, the mean ZOI 

for fall honey (19.89 ± 8.68 mm) was significantly larger (P=0.004) than the mean ZOI for spring 

honey (17.56 ± 6.14 mm) (Fig. 8C). In E. coli, the mean ZOI for fall honey (23.61 ± 3.86 mm) was 

significantly larger (P<0.001) than the mean ZOI for spring honey (13.44 ± 1.51 mm) (Fig. 8B). All 

other comparisons between spring and fall honey were not significantly different (P>0.05). 

Troutville 

 In A. baumannii, the mean ZOI for fall honey (15.67 ± 1.75 mm) was significantly larger 

(P=0.022) than the mean ZOI for spring honey (13.17 ± 1.54 mm). In E. coli, the mean ZOI for fall 

honey (20.00 ± 0.97 mm) was significantly larger (P=0.009) than the mean ZOI for spring honey 
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(17.33 ± 1.28 mm) (Fig. 8C). All other comparisons between spring and fall honey were not 

significantly different (P>0.05). 

Martinsville  

In S. aureus, the mean ZOI for fall honey (27.33 ± 3.39 mm) was significantly larger 

(P=0.015) than the mean ZOI for spring honey (21.56 ± 2.24 mm). In E. faecium, the mean ZOI 

for spring honey (10.72 ± 1.25 mm) was significantly larger (P=0.030) than the mean ZOI for fall 

honey (10.22 ± 1.00 mm) (Fig. 8D). All other comparisons between spring and fall honey were 

not significantly different (P>0.05). Among sample sites, significant differences occurred more 

frequently in Martinsville honey (Figs. 8 and 9). 

Pollen Analysis 

 Dr. Warny analyzed a total of 2,539 pollen grains from the four sample sites (Figs. 10 

and 11). Overall, spring honey was more diverse in pollen composition than fall honey. In 

particular, Fincastle spring honey had the most diversity among all of the samples with 18 

species identified. The dominant species were clover (33%), Russian olive (9%), and goldenrod 

(7%) (Figs. 10 and 11). Martinsville spring honey was the second most diverse with 15 species 

identified, the dominant species being clover (39%), locust tree (7%), and fabaceae from the 

pea family (9%). Following Martinsville spring honey was Covington spring honey with 13 

species identified, the dominant species being clover (24%), basswood tree (39%), and the 

genus Prunus (peach, plum, or cherry) (9%). Finally, Troutville spring honey had 11 species 

identified, the dominant species being clover (42%), mustards (12%), and dogwood tree (14%). 

Among the fall pollen pellets, one species was recovered from Covington fall pellet: golden rod 

(100%). Two species were identified in the Martinsville fall pellet: goldenrod (59%) and grass 
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(41%), and three species were identified in fall pellets from Fincastle and Troutville. The 

Fincastle species recovered were goldenrod (72%), and crepe myrtle (26%), and Asteraceae 

(likely dandelion) (2%). The Troutville species recovered were goldenrod (82%), elm (16%), and 

Asteraceae (likely sunflower) (2%).  

Honeybee Gut Dissection and Culture-Dependent Identification of the Bee Gut Community 

  Forty-two different morphotypes were isolated from the honeybee gut (Figs. 12 and 

13). One appeared to be fungal, so it was disregarded. A representative culture for each 

morphotype was maintained for DNA sequencing. Thirty six of the 42 isolates had high-quality 

data that allowed for successful contiguous sequence (forward and reverse sequence 

combined) construction in Sequencher (Fig. 14). Ten different microorganisms total (across all 

four locations, across all media types, and across midgut and hindgut segmentations) were 

identified in NCBI BLAST (Fig. 15). Six identified species were from the Bacillus genus (B. 

megaterium, B. thuringiensis, B. mycoides, B. anthracis, B. cereus, and B. weidmannii). The 

remaining microbes identified were P. vagans, P. agglomerans, P. alvei, and S. marcescens.  

 According to results from the entire bee guts dissected in location, disregarding midgut 

or hindgut location, in Fincastle, B. mycoides made up the largest portion of the bee gut species 

identified (40%), followed by S. marcescens (30%), P. vagans (10%), B. weidmannii (10%), and B. 

cereus (10%) (Fig. 16A).  In Troutville, B. mycoides made up the largest portion of the bee gut 

species identified (66.6%), followed by B. thuringiensis (11.1%), B. megaterium (11.1%), and P. 

agglomerans (11.1%) (Fig. 16B). In Covington, B. mycoides again made up the largest portion of 

the microbes identified (75%), followed by the only other microbe identified in Covington bees, 

S. marcescens (25%) (Fig. 13C). In Martinsville, B. mycoides made up 33.3% of identified gut 
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bacteria, followed by B. megaterium (22.2%), B. thuringiensis (22.2%), P. alvei (11.1%), and B. 

anthracis (11.1%) (Fig. 16D). 

 Looking at species identified in bees’ midgut and hindgut at a given location, of the 

Fincastle midgut community three species were identified: 40% S. marcescens, 40% B. 

mycoides, and 20% B. weidmannii (Fig. 17A). In the hindgut of the bees dissected from 

Fincastle, four species were identified: B. mycoides (40%), S. marcescens (20%), B. cereus (20%), 

and P. vagans (20%) (Fig. 17B). Of the Covington bee midgut community, there were two 

species identified: B. mycoides (66.7%) and S. marcescens (33.6%) (Fig. 17C). In the hindgut 

community, the only species recovered and identified was B. mycoides (100%) (Fig. 17D). In the 

Troutville honeybee midgut, only two species were identified: B. mycoides (75%) and B. 

megaterium (25%) (Fig. 17E). In the Troutville hindgut community, three species were 

identified: B. mycoides (60%), P. agglomerans (20%), and B. thuringiensis (20%) (Fig. 17F). In the 

Martinsville midgut community, three microbes were identified: B. mycoides (50%), B. 

megaterium (25%), and P. alvei (25%) (Fig. 12G). From the Martinsville honeybee hindgut, four 

species were identified: B. thuringiensis (40%), B. mycoides (20%), B. megaterium (20%), and B. 

anthracis (20%) (Fig. 17H). 

Discussion 

In order to determine antimicrobial strength of honey across the four sample sites in 

southwest Virginia, antimicrobial assays were performed with ESKAPE pathogens to measure 

and analyze ZOI, the larger ZOI demonstrating stronger antimicrobial properties of a given 

honey. Pollen from the sample site spring honey and fall pollen pellets were analyzed to 

determine foraging diversity because the phytochemicals in plants have the capacity to impart 
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antimicrobial properties in honey. Lastly, honeybee gut dissection and microbe identification 

were performed to identify potential microbial products contributing to honey’s antimicrobial 

properties.  

Antimicrobial Assays  

Naturally occurring antimicrobial agents, chemicals that kill or inhibit growth of 

microorganisms, can be -cidal (kill microbes), -lytic (microbial cell lysing), or -static (inhibit but 

do not kill microbes) (Madigan et al. 2014). Bactericidal agents kill the cell by tightly binding to 

cellular targets, which causes a linear decrease in the viable cell count and only flattens total 

cell count (Madigan et al. 2014). Bacteriolytic agents lyse a bacterial cell, therefore killing it, 

which causes a linear decrease in the total cell count and viable cell count (Madigan et al. 

2014). Bacteriostatic agents inhibit crucial biochemical processes in a way that, if the agent is 

removed, the bacterial cell can continue growing (Madigan et al. 2014). The linear increase of 

viable cell count and total cell count flattens upon the addition of the bacteriostatic agent then 

increases linearly again once the agent it removed (Madigan et al. 2014). Antimicrobial agents 

also have a wide variety of functional targets in the cell, for example cell wall structure, protein 

synthesis, and membrane transport processes (Madigan et al. 2014). 

Because of the floral, and therefore foraging, diversity in the spring, fall honey was 

expected to be less antimicrobial than spring honey from the sample sites. However, fall honey 

from each sample site tended to be stronger than spring honey in microbial growth inhibition. 

Although some pathogens responded better to spring honey over fall, overall, fall honey was 

more potent. Specifically, Martinsville fall honey was demonstrated to have the strongest 

antimicrobial properties among sample site honey. The antimicrobial agents cannot be 
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hypothesized; however, the difference in antimicrobial properties of the honey samples was 

demonstrated.  

pH 

Due to honey’s acid content, primarily gluconic acid, the lower the pH, the stronger the 

honey’s inhibition of microbial growth (da Silva et al 2016). The pH of honey commonly ranges 

from 3.2 to 4.5, and the honey from spring and fall from each sample location lie within this 

expected range (da Silva et al 2016). Martinsville seemed to produce the most antimicrobial 

honey among sites and seasons even though its pH (4.3 in spring honey and fall honey) was in 

the middle of the pH values of the sample honey, which contradicts the findings in da Silva et al. 

2016. This suggests that compounds other than gluconic acid may be giving Martinsville honey 

its antimicrobial strength. Although Troutville spring honey was the most acidic, it had the least 

antimicrobial effect on the pathogens. Although not known, specific compounds are likely 

present that are giving this honey its antimicrobial properties. Martinsville, although a 

moderate 70% dilution pH among the other sample sites, was the darkest honey followed by 

Covington then Fincastle and Troutville being the lightest of the fall honey (Fig. 6).  

pH testing was the last of the methods to be conducted, and by the time it was performed, 

most of the honey, all except Troutville, Martinsville, and Covington fall honey, crystallized (i.e. 

became semi-solid, with large, visible sugar crystals). Crystallization is favored when water 

content is elevated; however, if water content is too low, the honey becomes supersaturated 

with glucose, which is less soluble than fructose (Conforti et al. 2006). This is why bees stop 

dehydrating their honey once it reaches about 17% water concentration (Olaitan et al. 2007; 

White and Doner 1980). If pH had been tested with the pure honey samples immediately upon 
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collection, and if honey was stored at room temperature instead of being refrigerated, results 

may have varied, and crystallization would likely have not occurred since dilution and cooler 

temperatures promote crystallization (Conforti et al. 2006).  

Positive and Negative Controls  

In order to test the strength of the honey samples, deionized water was used to act as 

the negative control, while manuka honey and tetracycline were used as the positive controls. 

Disks soaked in deionized water on the ESKAPE pathogen plates did not produce ZOI. Manuka 

honey was used because it is a known, strong antimicrobial. In order to test the honeys against 

a medical grade antimicrobial, the broad-spectrum antibiotic, tetracycline, was used. 

Tetracycline is bacteriostatic, meaning it halts the growth of additional bacteria in a given area 

(Grossman 2016). It binds the ribosomal complex, which prevents the association of aminoacyl-

tRNA with the bacterial ribosome, and therefore inhibits bacterial protein synthesis. (Roberts 

2002). Change in pH drives the tetracycline to move across the membrane through porin 

channels and into the periplasmic space where it binds reversibly to the prokaryotic 30S 

ribosomal subunit, halting protein synthesis. Because of its mechanism of action, Tetracycline is 

considered broad-spectrum because it is effective against both gram-negative and gram-

positive bacteria as well as intracellular chlamydiae, mycoplasmas, and rickettsiae. In some 

cases, it is also effective against eukaryotic pathogens (Roberts 2002).  

Comparison of Manuka Honey to Fall and Spring Honey at each Site  

While significant differences were found in response of certain ESKAPE pathogens to 

honey from particular sample sites, overall, Martinsville spring and fall honey was the most 

effective against S. aureus, having the largest mean ZOI recorded (27.33 ± 3.39 mm) across all 
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honey and sample sites. Although spring honey was expected to be more effective as an 

antimicrobial, and it was in some cases, fall honey across sites was more effective against 

ESKAPE pathogens in mean ZOI calculated. Various phytochemicals were expected to be 

present in spring honey due to the diversity of foraged pollen (Nolan et al. 2019). Although that 

might have been the case in the spring sample site honey, something caused fall honey to be 

more potent than spring. Manuka honey’s methylglyoxal content being 100 times higher than 

that in average honey made it a standard for comparison (Mavric et al. 2008). Because fall 

honey produced larger mean ZOIs in many cases than manuka honey, a particular potent 

phytochemical, or combination of phytochemicals were likely present.  

Pollen Analysis 

 According to Di Pasquale, diversity of pollen in a honeybee’s diet is important in bee 

health; however, quality of pollen is much more important than diversity (Di Pasquale 2016). 

Depending on the bee’s job and hierarchy, it will allocate crude protein from pollen in a way to 

better itself physiologically (Pernal and Currie 2000). For example, workers use the protein to 

grow their ovaries and hypopharyngeal glands (Pernal and Currie 2000). Poor quality pollen, 

meaning pollen that has lost its protein-based nutritional value due to dehydration, negatively 

affects the hypopharyngeal glands, brood development, and worker longevity (Di Pasquale 

2016). Habitat loss also leads to nutritional stress (Di Pasquale 2016). Alaux and colleagues 

found that polyfloral diets boosted the bees’ immunocompetence, specifically by increasing 

glucose oxidase activity (Alaux et al. 2010). Glucose oxidase produces gluconic acid, a driving 

force in the acidity of honey (da Silva et al 2016).  
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When beekeepers were surveyed regarding known forage in the area, the reported 

forage differed from the recovered pollen (Fig. 10). The shaded boxed in Fig. 10 represent 

pollen species that were reported as well as recovered. Some reported species were not 

recovered; however, some recovered species had not been reported. It was unexpected that 

trees would be just as prominent in honeybee diet. Walnut, Russian olive, pine, prickly ash, elm, 

and crepe myrtle were among the tree pollen sources in the honeybee diet (Fig. 10). Pollen was 

recovered that the beekeepers were unaware was in the area. Beekeepers speculated that the 

Fabaceae identified in the spring honey samples from Troutville, Fincastle, and Martinsville 

were likely black-eyed peas (Vigna unguiculata), which are commonly planted as a cover crop in 

the fall in the region. Goldenrod provided the majority of the bees’ fall diet across sample sites, 

consistent with beekeeper reports (Fig. 10). 

 Due to the fields of wildflower planted in the foraging vicinity, Troutville spring honey 

was expected to be the most diverse in pollen species, therefore having an increased number of 

plant phytochemicals causing it to have more antimicrobial strength than the rest of the honey 

samples (Dillon and German 2002). However, pollen collected from the spring honey revealed 

the smallest number of species identified (11) and that the bees were not primarily foraging on 

the nearby wildflowers; rather, they were foraging mainly on holly trees, dogwood trees, 

mustard, and Russian olive. Among spring honey samples, Fincastle had the most species 

diversity (18), followed by Martinsville (16), Covington (12), and Troutville (11). Among fall 

honey samples, Fincastle and Troutville had the most species diversity (3) followed by 

Martinsville (2), and Covington (1). Based on the results, plant diversity being directly related to 

antimicrobial strength was not demonstrated. However, Martinsville and Fincastle spring honey 
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could indicate that it is not necessarily the pollen species diversity that is of importance in the 

relation to honey’s antimicrobial properties; rather, it may be the chemical composition of 

pollen from a particular species or group of species that influences the antimicrobial properties 

of honey. For example, Starks and colleagues isolated the antimicrobial compounds in 

goldenrod (Solidago sp.), which was prominent in the fall samples. The compounds identified, 

two of which were clerodane diterpenes are solidagoic acids, are known to have moderate 

antimicrobial activity against S. aureus (Starks et al. 2010). Additionally, Elm (Ulmus spp.) trees 

possess a gene encoding for antimicrobial peptide (AMP) production (Newhouse 2005). 

Therefore, some of the plants represented in the pollen samples are known to produce 

compounds with antimicrobial activity. It is important to note that the pollen identified in the 

spring honey is representative of the entire foraging season; however, the pollen pellets were a 

single sample collected once during the season. Therefore, it is unknown if the fall pollen 

pellets were indeed representative of the pollen on which bees were foraging during the entire 

fall season at each sample site. 

Honeybee Gut Dissection and Culture-Dependent Identification of the Bee Gut Community 

Overall, ten microbial species were isolated from the honeybee gut, two of which were 

specific to the midgut (B. weidmannii and P. alvei) and five of which were specific to the 

hindgut (B. thuringiensis, B. anthracis, P. vagans, B. cereus, and P. agglomerans). B. mycoides 

was the dominant species identified in both the midgut and hindgut of bees from each sample 

location (Fig. 16 and Fig. 17). The second most prominent microbe found was S. marcescens, 

found in the Fincastle and Covington midgut and the Fincastle hindgut (Fig. 16 and Fig. 17). The 
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third most prominent species was B. megaterium, found in the Troutville and Martinsville 

midgut and the Martinsville hindgut (Fig. 16 and Fig. 17). 

B. mycoides was isolated from the midgut and hindgut from all four sample sites using 

BHI and columbia agar supplemented with sheep’s blood. B. mycoides is Gram-positive, rod-

shaped, and spore-forming anaerobe, which has been isolated from soil and coastal sediment 

(NCBI BLAST). B. mycoides is known to produce the volatile compounds phenylacetic acid and 

methylphenyl acetate, which have antifungal and phytotoxic properties (Wu et al. 2020).  

S. marcescens was isolated from both the Fincastle midgut (on BHI) and hindgut (on 

TSA) as well as in the Covington midgut (on BHI and TSA). S. marcescens is a rod-shaped, Gram-

negative, facultative anaerobe in the family Yersiniaceae. It is known to be an opportunistic 

pathogen, causing infections in wounds as well as the respiratory and urinary tract (Hejazi and 

Falkiner 1997). S. marcescens has been found in a wide variety of environments, but because it 

prefers damp conditions, as such it is commonly observed in bathrooms in toilets and on 

shower walls as a pink-orange biofilm. S. marcescens can perform casein hydrolysis, allowing it 

to produce extracellular metalloproteinases, important in cell-to-extracellular matrix 

interactions. According to Duanis-Assaf, κ-casein may have anti-biofilm activity by attaching to 

adhesion-like proteins, prohibiting bacterial adhesion to surfaces (Duanis-Assaf 2020). 

Metalloproteinases inhibit E. faecalis biofilms formation as well (Tay 2015). The locations from 

which the top 5 most closely matched BLAST hits were identified, using the microbe’s accession 

number, were mixed greens, rhizosphere soil, urine in canines, human blood, and human 

sputem.  

https://en.wikipedia.org/wiki/Bacillus_(shape)
https://en.wikipedia.org/wiki/Gram-negative_bacteria
https://en.wikipedia.org/wiki/Gram-negative_bacteria
https://en.wikipedia.org/wiki/Yersiniaceae
https://en.wikipedia.org/wiki/Casein
https://en.wikipedia.org/wiki/Hydrolysis
https://en.wikipedia.org/wiki/Metalloproteinase
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 B. thuringiensis was isolated only from the hindguts from Martinsville and Troutville on 

TSA. B. thuringiensis is a Gram-positive, sporulating bacterium mostly found in soil but also 

occurs has been found in the gut of many insects. When certain B. thuringiensis strains 

sporulate, they produce insecticidal crystal proteins, also called delta endotoxins or Bt toxins, as 

in B. thuringiensis toxins (Kumar et al. 1996). The Bt gene is divided into cry I, II, III, and IV 

classes; cry codes a parasporal inclusion protein making it a biological pesticide, the most 

commonly used biological pesticide all over the world (Kumar et al. 1996; Yilmaz et al. 2005). B. 

thuringiensis is closely related to B. anthracis and B. cereus, and like B. cereus, B. thuringiensis 

has been found to be more effective at treating S. aureus infection than some antibiotics 

(Yilmaz et al. 2005). According to Yilmaz and colleagues, when tested against antibiotic disks, 

some of which were Erythromycin, Vancomycin, Cephazolin, and Azithromycin, B. thuringiensis 

was effective at inhibiting S. aureus growth (Yilmaz et al. 2005). Antibiotics produced by Bacilli 

are effective against both Gram-positive and Gram-negative bacteria, but are more so effective 

against Gram-positive (Yilmaz et al. 2005). The locations from which the top 5 most closely 

matched BLAST hits were identified, using the microbe’s accession number, were mosquito 

larva breeding sites, soybean nodules, soil, the shrimp gastrointestinal tract, and swamp forest 

soil. 

B. megaterium, also called Priestia megaterium, was isolated from the Martinsville 

hindgut (on sucrose agar) and the midgut from Troutville and Martinsville (on TSA). It is a rod-

shaped, Gram-positive bacterium that is primarily aerobic and spore-forming. B. megaterium is 

also among the largest known bacteria (Bunk et al. 2010). It produced penicillin amylase, which 

is used to make synthetic penicillin. B. megaterium has been identified in honey and bee pollen 
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(Mohammad et al. 2020). Emimycin, which inhibits bacterial replication, and oxetanocin, and 

antiviral antibiotic, are two of the antibiotics B. megaterium produces, in addition to some 

fungicidal toxins (Andrei and Snoeck 2021; Morita 1999; Vary 1994). The locations from which 

the top 5 most closely matched BLAST hits were identified, using the microbe’s accession 

number, were soil rice straw, cryoconite, saffron rhizosphere, soil, and wheat.  

B. anthracis was solely isolated from the Martinsville hindgut and was grown on TSA. B. 

anthracis is also the causative agent of anthrax, a lethal disease in livestock which can be 

zoonotically transferred to humans (Spencer 2003). B. anthracis endospores are extremely 

resilient, hence their past use as a bioweapon. B. anthracis is a Gram-positive and rod-

shaped bacterium and the only obligate pathogen in the Bacillus genus. PurE (N5-carboxy-

amino-imidazole ribonucleotide mutase) is an enzyme produced by B. anthracis that is believed 

to be a potential target in antibiotic development (Kim et al. 4014). Little research has been 

done since Kim’s study to discover the mechanism of action of PurE. The location from which 

the top most closely matched BLAST hit was identified, using the microbe’s accession number, 

was the rhizosphere. 

P. alvei was solely isolated from the Martinsville midgut on TSA. It is a Gram-positive, 

rod-shaped, motile anaerobe. P. alvei is a secondary invader during outbreaks of European 

foulbrood, a severe bacterial disease that affects brood, or larvae, caused by the Gram-positive 

bacterium Melissocccus plutonius (Forsgren 2010; Djukic et al. 2012). Djukic and his colleagues 

sequenced the genome of a strain of P. alvei called DSM 29, and they identified putative genes 

encoding an antimicrobial peptide (AMP) (Djukic et al. 2012). Since 2012, further research has 

demonstrated that P. alvei NP75 (a different strain) produces two antimicrobial peptides, 

https://en.wikipedia.org/wiki/Gram-positive
https://en.wikipedia.org/wiki/Bacterium
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paenibacillin N and P, both of which have effectiveness against clinical pathogens, paenibacillin 

N against E. coli and paenibacillin P against Bacillus sphaericus (Jagadeesan et al. 2020). 

Bacillus-derived AMPs are broad-spectrum (Sumi et al. 2014). Although their mechanism of 

action is unclear, AMPs are thought to kill bacteria by either by forming channels in or 

disrupting the bacterial cell wall (Sumi et al. 2014). The locations from which the top most 

closely matched BLAST hits were honey, bee pollen, pond water, fish feces, and cow feces. 

P. vagans was solely isolated from the Fincastle hindgut and was grown on BHI. It is a 

Gram-negative, rod-shaped aerobe. According to Kamber, P. vagans strain C9-1 produces at 

least two antibiotics, one being herbicolin I. While the mechanism of action is unknown, it has 

been examined and demonstrated as antibiotic, specifically in pears and apples infected with 

Erwinia amylovora, a Gram-negative organism that is the causative agent of fire blight disease 

(Kamber et al. 2012). The locations from which the top most closely matched BLAST hits were 

Megymenum gracilicorne (saw toothed stinkbug) gut, infant blood, wounds, and pine.  

P. agglomerans, closely related to P. vagans, was solely isolated from the Troutville 

hindgut on BHI. It is a Gram-negative, rod-shaped aerobe known to produce antibiotics, 

including herbicolin, pantocins, phenazine (Rezonnico 2017). According to Rezonnico (2017), P. 

agglomerans strains are the most promising biocontrol agents from many plant diseases. A 

lipopolysaccharide (IP-PA1) produced by P. agglomerans, has been shown to prime 

macrophage activation in healing and protect against infection, allergies, and cancer (Nakata et 

al. 2011). The locations from which the top most closely matched BLAST hits were cherries, 

perithecium (the fruiting body of an ascomycete phylum fungus), and soil. 

https://en.wikipedia.org/w/index.php?title=Pantocin&action=edit&redlink=1
https://en.wikipedia.org/wiki/Phenazine
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B. cereus was solely isolated from the Fincastle hindgut on TSA. B. cereus is a Gram-

positive, rod-shaped, motile, facultatively anaerobic that has the capacity to sporulate. As 

mentioned in the B. thuringiensis section, B. cereus, specifically strain M15, inhibits both Gram-

positive and Gram-negative bacteria and is more effective than some of the test antibiotics in 

(Yilmaz et al. 2005). A study showed that B. cereus M15 was effective at inhibiting growth of 

other B. cereus strains as well as Pseudomonas fluorescens, Microccocus flavus, and B. 

thuringiensis (Yilmaz et al. 2005). Some of the polypeptide antibiotics produced by Bacillus that 

work to inhibit bacterial growth of various species are bacitracin, gramycidin S, polymyxin, 

tyrotricidin (Yilmaz et al. 2005). The locations from which the top 5 most closely matched BLAST 

hits were outbreaks of infection in hospitals, the rhizosphere, spiders, a mosquito larva 

breeding site, and a soybean nodule. 

B. weidmannii was solely isolated from the Fincastle midgut and was grown on TSA. It is 

Gram-positive, rod-shaped, aerobic, and spore-forming. According to Muriuki, B. weidmannii is 

associated with dairy spoilage (Muriuki 2020). There is no known antimicrobial compound 

produced by B. weidmannii that has been shown. The locations from which the top most closely 

matched BLAST hits were farm water, fish gills, raw milk, and primarily soil.  

Although the honeybee’s nine core gut bacterial clusters discussed in Kwong and 

Moran’s literature review (Snodgrassella alvi, Gilliamella apicola, Lactobacillus Firm-4, 

Lactobacillus Firm-5, and five Actinobacteria of the species Bifidobacterium asteroides) were 

not identified, ten gut bacteria were isolated from the midgut, hindgut, or both and identified 

(2016). The 10 microorganisms identified in this study were: six Gram-positive species from the 

Bacillus genus (B. megaterium, B. thuringiensis, B. mycoides, B. anthracis, B. cereus, and B. 

https://en.wikipedia.org/wiki/Gram-positive_bacteria
https://en.wikipedia.org/wiki/Gram-positive_bacteria
https://en.wikipedia.org/wiki/Bacillus
https://en.wikipedia.org/wiki/Facultative_anaerobic_organism
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weidmannii), two Gram-negative species from the Pantoea genus (P. vagans and P. 

agglomerans), Gram-positive P. alvei, and Gram-negative S. marcescens.  

Overall, 90% of the bacteria identified in the southwest Virginia honeybee gut are 

known to produce compounds (like acids, enzymes, or AMPs), in particular strains, that could 

contribute to the antimicrobial activity of honey. When the bee ingests and regurgitates its 

nectar, adding its secreted enzymes, and likely some of its gut microbes, the honey produced by 

the bees at the sample sites may contain some of the products of the gut microbes found. It is 

unknown what these antimicrobial compounds are and in what concentration they are present.  

Conclusion 

This study provided evidence of antimicrobial properties in multifloral spring and fall 

honey from southwest Virginia. Honey is a powerful antimicrobial agent when it comes to 

fighting infections (Ciancosi et al. 2018). While manuka honey is known to have strong 

antimicrobial properties due to its methylglyoxal content, fall sample site honey from 

southwest Virginia rivaled manuka honey and were more effective at inhibiting bacterial growth 

compared to the Manuka honey used. While the Fincastle sample site in the spring possessed 

the highest pollen species diversity, and theoretically a higher diversity of phytochemicals, its 

antimicrobial strength did not quite match that of Martinsville (Dillon and German 2002; Manyi-

Loh et al. 2011). On the other hand, Martinsville honey was a moderate pH compared to 

Troutville spring honey, which was the most acidic, but the least antimicrobial. Several plants 

that are represented in the pollen analysis are known to have antimicrobial properties. 

Similarly, particular strains of the gut microbes identified from the honeybee’s hindgut and 

midgut are known to produce acids, enzymes, and other bioactive agents that potentially 
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contributed to the antimicrobial properties of the sample site honey. While only particular 

strains of each of the ten identified microorganisms in the gut community possess genes 

encoding for production of antimicrobial agents, those strains could have been the ones 

present in the bee guts samples. For future studies, fresh dissection would be preferable in 

order to avoid potential bias in species that could be cultivated since the bees were frozen. 

Freezing the bees possibly allowed sporulating microorganisms, like Bacillus, to predominate 

because microbes tend to sporulate when environmental conditions, like change in 

temperature and nutrient availability, are not ideal for growing. 

Overall, honey in southwest Virginia indeed possessed antimicrobial properties whose 

sources can be hypothesized, but future studies should aim to isolate and identify the major 

contributors, as well as their concentrations, among antimicrobial compounds in the honey 

samples collected. In addition, it would be preferable to visit sample sites at multiple times in 

each season to attempt to capture the full diversity in gut organisms and foraging preferences. 

Sampling over the course of a year might capture the diversity of the honeybee’s diet and 

therefore the phytochemicals contributing to honey’s antimicrobial properties. 
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Figures and Tables 

 

Fig. 1. Inside and outside the hive from frame to comb: (A) Fincastle, (B) Covington,  

(C) Troutville, (D) Martinsville. 

Table 1. Contributors to honey’s antimicrobial properties. Direct contributors affect cellular 
mechanisms, while indirect contributors have various effects on the bacterial cell.  
(inspired by Nolan et al. 2019) 
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Table 2. Microorganisms sensitive to honey. Honey, whether Manuka, Tualang, or simply 

raw, multifloral honey, has proven to be effective at killing and preventing further growth of 

the above microorganismal species and strains. The ESKAPE pathogens are highlighted. 

(Ahmed and Othman 2013) (Al-Waili et al. 2011) (Carter et al. 2016) (Ciancosi et al. 2018) 

(Cooper et al. 1999) (Olaitan et al. 2007)  
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Fig. 2. Divisions of phytochemicals. The three types of phytochemicals are carbs, VOCs, and 
phenolic compounds. The latter two branch further into their own subdivisions. All honey 
contains methylglyoxal, an aldehyde; however, Manuka honey contains the highest 
concentration of methylglyoxal, which is the primary reason for Manuka honey’s its 
antimicrobial properties. Bee-defensin, hydrogen peroxide, and pH also are responsible for 
honey’s antimicrobial properties. 
(Patra 2012) 
 

Fig. 3. Experimental design. The antimicrobial properties of honey are a combination of 

what the bees are foraging on, as well as how the bee gut community processes the diet. 

Therefore, the three components of this research project included antimicrobial assays, 

honeybee gut dissection, and pollen analysis.  
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Fig. 4. Sample sites. Honey, honeybees, and pollen pellets were collected from four regions 

across Southwestern Virginia: Covington, Fincastle, Troutville, and Martinsville. 

(Virginia map from the National Speleological Society) 

Fig. 5. Hives at sample sites: (A) Fincastle, (B) Covington, (C) Troutville, (D) Martinsville. 
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Fig. 6. Lightest to darkest honey. Left to right: Troutville, Fincastle, Covington, Martinsville 

fall honey. Darker honey tends to have a better taste and stronger antimicrobial properties 

(White and Doner 1980).  

 

Fig. 7. Antimicrobial assays. (A)Troutville gram negative E. coli, (B) Martinsville gram positive 
E. faecium, (C) Martinsville Manuka, July, and October honey K. pneumoniae, (D) Martinsville 
Manuka larger ZOI but only diffuse halo (L) and July honey smaller ZOI but clear (R). 
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Fig. 8. Zones of inhibition for ESKAPE pathogens. Disks soaked in either spring honey, fall 

honey, Manuka honey, Tetracycline, or deionized water produced zones of inhibition (ZOI) 

when placed on plates with a lawn of each ESKAPE pathogen. Mean ZOIs were plotted for 

each ESKAPE pathogen across the four sample locations: (A) Fincastle, (B) Covington, (C) 

Troutville, (D) Martinsville. Values given as mean ± standard deviation. Asterisks indicate 

either the spring or fall honey is significantly different from manuka honey.  
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Fig. 9. Zones of inhibition for ESKAPE pathogens from spring (A) and fall (B) honey by 

sample location. Values given as mean ± standard deviation. Asterisks indicate a significant 

difference between spring and fall honey for the specific pathogen at the given site. The 

asterisk is placed above the mean ZOI that is significantly higher than its counterpart in the 

opposite season. 
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A B 

C D 

E F 

G H 

Fincastle 

Covington 

Troutville 

Martinsville 

Spring Honey Fall Pollen Pellets 

Fig. 10. Reported and recovered pollen from spring honey and fall pollen pellets from 
sites. Fincastle pollen from spring honey (A) and pollen from fall pollen pellets (B). Covington 
pollen from spring honey (C) and pollen from fall pollen pellets (D). Troutville pollen from 
spring honey (E) and pollen from fall pollen pellets (F). Martinsville pollen from spring honey 
(G) and pollen from fall pollen pellets (H). The shaded sections of the table indicate reported 
pollen sources that were indeed recovered in the pollen pellet, whereas unshaded sections 
indicate reported pollen sources that were not recovered in the pollen pellet sample. Images 
to the right are micrographs of pollen grains taken by Dr. Sophie Warny at Louisiana State 
University. 
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Fig. 11. Pollen recovered from each sample site in spring honey and fall pollen pellets. This 
figure shows the percentages of the pollen species recovered from each location’s spring 
honey as well as each location’s fall pollen pellet samples. Species diversity is the highest in 
Fincastle spring honey, with 18 species recovered. 
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Fig. 12. Gut dissection.  
 

Fig. 13. Labeled dissected gut. Species found strictly in the midgut and hindgut are labeled. 
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Fig. 14. Building a contiguous sequence. Once forward and reverse reads of the 16S rRNA 
gene were received, the sequences were edited, choosing nucleotide base pairs based on 
the chromatogram left undecided by Eurofins Scientific, and removing the beginnings and 
ends of the sequences that did not have clean peaks. Once a contiguous sequence was built 
and edited, the sequence was pasted into NCBI BLAST for microbe identification. 
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Bacillus megaterium (8.3%)

Paenibacillus alvei (2.8%)

Bacillus thuringiensis (8.3%)

Bacillus anthracis (2.8%)

Bacillus mycoides (52.8%)

Serratia marcescens (13.9%)

Pantoea vagans (2.8%)

Bacillus weidmannii (2.8%)

Bacillus cereus (2.8%)

Pantoea agglomerans (2.8%)

Fig. 15. Cultivable gut microorganisms in the southwest Virginia bee gut. Percentages were 
calculated based on all species identified across sample sites. 
 



70 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Cultivable communities from the whole bee gut by sample location: (A) Fincastle, 
(B) Covington, (C) Troutville, (D) Martinsville. Percentages were calculated based on the 
species that were identified at each sample site in the whole gut. 
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Fig. 17. Cultivable communities from the bee midgut and hindgut by sample location. 
Percentages were calculated based on the species that were identified at each sample site in 
each gut region. 
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