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Abstract 

The emerald ash borer (EAB; Agrilus planipennis) is a buprestid beetle native to Asia, 

classified as an invasive species in North America. EAB infests trees of genus Fraxinus (ash) 

and has spread to 35 states since its introduction in the early to mid-1990s. Notably, EAB has the 

potential to functionally extirpate all native ash species in North America. Our study aims to 

characterize the ecological impacts of EAB infestation in the Roanoke Valley of Southwest 

Virginia, to quantify the impact of edge effects on EAB forest invasion and mortality of ash 

trees, as well as investigate the role that forest edge effects play in forest regeneration post-ash 

tree mortality. In 2017, twelve forested study sites, six with ash trees and six without (e.g. 

controls), were established in the Roanoke Valley. Data were collected annually through 2020 on 

tree species composition and growth, as well as understory woody species composition. Signs of 

EAB infestation and ash mortality were tracked via a dieback scoring system at the ash sites 

across all study years. Significant increases in dieback scores of large (>12-cm DBH) and small 

(<12-cm DBH) trees across all years were documented, indicating progressive mortality of ash 

trees. Large trees had significantly higher dieback scores than small trees indicating more rapid 

progression of mortality, particularly in 2019 and 2020. Finally, while there were significantly 

less ash seedlings at the edge of ash sites (8.04 +/- 0.98) than in the core ( 20.20 +/- 2.27), there 

were no significant changes over time in the mean number of ash seedlings in the edge or core of 

ash sites. This may be due to harsher microclimatic conditions in the edge leading to lower seed 

production and/or recruitment. Because percent cover of invasive vine species was significantly 

higher at the edge of ash sites (14.22 +/- 3.02%) than in the core (6.51 +/- 3.27%), the survival of 

ash seedlings at the forest edge may be suppressed and thus survival of ash in these forests may 

be dependent upon the survival of ash seedlings in the core. 
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Introduction 

Natural History of the Emerald Ash Borer 

The emerald ash borer (EAB, Agrilus planipennis) is a buprestid beetle native to Asia and 

invasive in North America. EAB infests all species in the genus Fraxinus (ash) and since its 

detection and identification in the U.S. in 2002, EAB has caused widespread devastation of ash 

throughout the eastern portion of North America. However, in its native range of eastern Russia, 

northeastern China, Korea, Mongolia, Japan, and Taiwan, healthy trees of all native ash species 

are not killed by EAB due to a co-evolutionary history with the beetle that has resulted in genetic 

resistance to EAB (Rebek et al. 2008, Herms and McCullough 2014). 

Adult beetles target stressed ash trees via chemical markers, but will also readily infest 

and kill healthy ash trees not native to Asia as small as 2.5-cm diameter at breast height (DBH) 

(Herms and McCullough 2014). As with other host-specific insect herbivores, EAB likely selects  

host plants based off of a variety of stimulatory and inhibitory chemicals emitted by host plants. 

For example, in a study by Crook et al. (2008), artificially girdled Fraxinus pennsylvanicca 

(green ash) trees had elevated sesquiterpene levels, and six of the elevated compounds produced 

antennal responses of both male and female EAB. Mated female EAB elicited more frequent 

antennal responses than either virgin females or males, demonstrating that volatile cues from 

sesquiterpenes may play an important role in oviposition site selection (Crook et al 2008). 

Notably, the isolated sesquiterpene compounds that produced antennal activity in adult EAB, 

when used in baited traps, caught significantly more adult EAB than non-baited control traps 

(Crook et al. 2008).  

In its native range, EAB reportedly has the ability to colonize other genera apart from 

Fraxinus, including Ulmus (elm), Juglans (walnut), and Pterocarya (wingnut) (Anulewicz et al. 

2008). Closely related congeners of these genera are common in forested landscapes in much of 
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North America, and as such there was some concern over threat to additional tree species and/or 

their ability to facilitate the spread of EAB here in North America (Anulewicz et al. 2008). 

However, in southeast Michigan, field studies utilizing freshly cut logs of Fraxinus spp. and 

congener species such as Ulmus americana (American elm), Celtis occidentalis (hackberry), 

Juglans nigra (black walnut), Carya ovata (shagbark hickory), and Syringa reticulata (Japanese 

tree lilac) found that adult EAB occasionally landed and oviposited upon non-ash logs 

(Anulewicz et al. 2002). While EAB larvae developed normally upon ash logs, larvae failed to 

survive and develop in non-ash logs (Anulewicz et al. 2008), thus suggesting that the non-ash 

target species native to North America are not susceptible to EAB. One exception has been 

identified, Chionanthus virginicus (white fringetree); however, it exhibits greater tolerance to 

EAB in addition to reduced rates of infestation in comparison to native Fraxinus species (Ellison 

2012).  

The lifecycle of EAB is completed in 1-2 years, depending on climatic and environmental 

conditions and tree stress (Haack et al. 2002, Herms and McCullough 2014). Adult beetles 

emerge from early May to July and live for 3-6 weeks, feeding on small amounts of ash foliage 

but causing insignificant defoliation. Eggs are laid on ash bark and hatch within two weeks of 

deposition (Haack et al. 2002). When larvae hatch, they bore into the tree and feed on the 

cambium and phloem of the ash tree, effectively girdling the tree over time as infestation 

progresses, thus disrupting nutrient and water transport throughout the tree (Haack et al. 2002, 

Herms and McCullough 2014). Larvae feed from mid-summer through fall, completing four 

larval instars (Chamorro et al. 2012), and typically overwintering in the prepupal fourth instar 

stage within the outer bark or sapwood (Cappaert 2005). Larvae undergo pupation in the middle 
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to late spring, with adult beetles emerging soon after, leaving a D-shaped exit hole 2-3 mm in 

width in the bark of the tree.  

An ash tree exhibits numerous signs of infestation as mortality of the tree progresses. 

Infestation typically begins at the top of the tree and progresses steadily downward toward the 

base of the tree. Initial signs of infestation include progressive canopy thinning and dieback. As 

top-down tree mortality progresses, an infested ash tree will frequently produce epicormic 

sprouts in response to canopy death in order to continue to conduct photosynthesis. These 

epicormic sprouts are produced by epicormic buds which lie, typically dormant, under the bark 

of the trunk of the tree. Epicormic sprouts typically emerge progressively lower on the trunk of a 

tree as mortality progresses (Haack et al. 2002).  

Other signs of EAB infestation commonly include the peeling away of bark by 

woodpeckers in order to feed on developing larvae within the growth layer of the tree, commonly 

referred to as “flecking.” As tree mortality becomes more severe, bark may also begin to peel 

from the inner sapwood of the tree, revealing characteristic frass-filled, S-shaped larval galleries 

created by EAB larvae as they feed on the cambium and phloem of the tree from mid-June to 

mid-October (Haack et al. 2002, Herms and McCullough 2014). Finally, as newly formed EAB 

adults emerge, the tell-tale D-shaped exit holes can be observed on the trunk of the tree. 

Ultimately, full tree mortality generally occurs 2-5 years following initial infestation (Haack et 

al. 2002, Herms and McCullough 2014). 

History of Emerald Ash Borer in the United States 

EAB was first discovered in North America in 2002 near Detroit, Michigan. Subsequent 

dendrochronological analysis has shown that EAB was introduced in southeastern Michigan in 

the early to mid-1990’s (Siegert et al. 2014), likely through infested shipping crates or packing 
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material (Haack 2002, Smith 2006). Since its establishment, EAB has spread across the eastern 

portion of North America, and as of August 2021 is present in 35 states from Maine, south to 

Georgia, and as far west as Colorado (Emerald Ash Borer Information Network, n.d.). If left 

unchecked and ash nears 100% mortality in infested areas, some scientists predict that EAB has 

the potential to functionally extirpate all native ash species within North America (Haack et al. 

2002, Smith 2006, Klooster et al. 2014).  

The spread of EAB throughout the U.S. occurred via both natural and human-facilitated 

movement of the beetle. EAB spreads relatively short distances via natural dispersal (adult 

migration). Specifically, adult beetles typically fly in short spurts of 8 to 12 meters, although 

mated females can fly distances of over one kilometer (Haack et al. 2002). Additionally, satellite 

populations were initially established due to human transport of infested ash wood which rapidly 

increased the spread of EAB (Herms and McCullough 2014). 

Many species of ash, particularly white and green ash, are commercially important timber 

species. Ash wood is used for a variety of applications due to its superior strength, including the 

production of baseball bats, tool handles, furniture, and flooring, and as such is an extremely 

important timber resource (MacFarlane and Meyer 2005, Bonner and Karrfalt 2008). Forest ash 

in the United States has an estimated compensatory value (an economic estimation of the cost of 

replacement of those trees as a structural asset in urban areas) of $282.3 billion and comprises 

approximately 7.5% of hardwood sawtimber value. Therefore, the loss of forest ash as a timber 

resource would be economically devastating (Poland and McCullough 2006). 

Furthermore, ash is also a common landscaping tree and an important component to 

many urban forests in North America. Ash constitutes over 20% of total trees in many North 

American municipalities (Kovacs et al. 2009) and much of the economic impact of EAB 
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devastation will ultimately be attributed to the costs of treating and removing high-risk trees in 

urban areas (Kovacs et al. 2009, Herms and McCullough 2014). Specifically, removal of all 

urban ash trees in the United States would cost an estimated $20-60 billion, not including 

replacement (Poland and McCullough 2006). Beyond the economic impacts, mature trees also 

offer a large variety of ecosystem services to urban areas including reduction of the urban heat 

island effect, controlling runoff and erosion, improving airborne pollutant levels by offsetting 

emissions, as well as increasing property values and quality of life (Wolf 2007, Herms and 

McCullough 2014, United States Forest Service 2015, Livesley et al. 2016). 

Eradication and Control Efforts 

In response to the disastrous threat that EAB poses to municipalities and ecosystems in 

North America, many eradication and control methods have been explored and implemented. 

Early eradication efforts following initial EAB detection in Michigan and Ontario focused on 

containing infestations in the target areas as well as eliminating localized “outlier” satellite 

populations (Herms and McCullough 2014). Unfortunately, these efforts were not successful and 

due to the lack of effective, practical eradication methods, the focus of the EAB management 

program lead by the United States Department of Agriculture’s Animal and Plant Health 

Inspection Service (USDA APHIS) has shifted from eradication to integrated pest management 

(APHIS 2015). 

Biological control has been extensively studied as a means to control EAB infestation 

and spread through an integrated pest management approach. Examined biological control 

measures include predators, pathogens, and parasitoids native to North America as well as 

parasitoids that target EAB in their native range (Bauer et al. 2003, Cappaert 2009, Herms and 

McCullough 2014, Gould et al. 2020). For example, North American woodpecker species 
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regularly prey on larval EAB, and studies found that they represent the largest source of 

naturally-caused EAB mortality in forested systems here in the U.S. (Lindell 2008, Duan et al. 

2010). In addition, a number of parasitoids, pathogenic fungi, and predatory insects native to 

North America that target EAB have been observed but generally result in low EAB mortality 

(Bauer et al. 2003, Duan et al. 2010).  

Upon the identification of EAB parasitoid wasps native to its host range (Oobius agrili 

[Encyrtidae], Tetrastichus planipennisi [Eulophidae], Spathius agrili, and Spathius galinae 

[Braconidae]), an APHIS facility in Michigan was established for the purpose of rearing and 

releasing adult wasps in order to control EAB populations. This facility presently holds permits 

to release all four studied parasitoid species in every state where EAB is currently established 

(APHIS 2015, Gould et al. 2020). However, none of these biological control agents have been 

capable of eradicating or dramatically reducing EAB populations, although some have been 

shown to control population growth (Gaudon and Smith 2020).  

Finally, insecticidal control targeting both adult and larval EAB as a means to control 

EAB spread and individual ash mortality has been extensively studied. Unlike biological control, 

insecticides have demonstrated effectiveness at reducing EAB populations below damaging 

thresholds (Herms 2009, Bick et al. 2018). While these treatments are expensive and must be 

maintained over a period of years and thus are not a viable control option in natural, forested 

settings, they are used within urban settings for individual high-value trees. Indeed, in urban 

settings the costs of preventative treatment may be more economically viable than the 

subsequent costs of removal, replacement, and lost ecosystem services (Vannatta et al. 2012). 

Thus, this approach has been implemented by some homeowners, businesses, and municipalities 

(Vannatta et al. 2012, Herms and McCullough 2014).  
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Known Ecological Impacts of Emerald Ash Borer 

Fraxinus spp. comprise a significant portion of North American forests. There are nine 

species of Fraxinus native to North America, with white and green ash (F. americana and F. 

pennsylvanica respectively) having the widest distribution (Bonner and Karrfalt 2008). White 

ash is found from Nova Scotia, south to Florida, and as far west as Texas and Minnesota, while 

green ash is found from Cape Breton Island, Nova Scotia, and Alberta, Canada, south to Texas 

and northwest Florida (Bonner and Karrfalt 2008). In an atlas ranking 80 common tree species 

found in the eastern contiguous United States, white ash and green ash ranked number 17 and 12, 

respectively, in average importance value (how dominant a species is in comparison to other 

species within a localized area) (Iverson et al. 1999). Four ash species are native to Virginia, 

including white and green ash, black ash (Fraxinus nigra), and pumpkin ash (Fraxinus 

profunda), and of these species, white and green ash are native to the Roanoke Valley.  

As ash nears 100% mortality in localized areas and with no control measures identified 

that would result in eradication of EAB, it has been suggested that ash in North America could 

be functionally extirpated due to EAB (Klooster et al. 2013, Herms and McCullough 2014). 

Therefore, understanding the ecological impacts of the loss of ash trees is important. The 

persistence of ash in forests that have been infested with EAB ultimately hinges upon the ability 

of ash to regenerate following mortality, and whether EAB populations persist in areas in which 

all or most ash trees are dead.  

Importantly, EAB is capable of infesting ash trees well before they have reached 

reproductive maturity. For example, F. americana and F. pennsylvanica do not produce seeds 

until they are 20 years old, i.e. when a tree is 8-10-cm DBH, whereas EAB can infest and kill ash 

trees as small as 2.5-cm DBH (Klooster et al. 2013). Thus, the storage of ash seeds within the 
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soil of a given ecosystem, i.e. the seed bank, will be essential to both the survival of Fraxinus as 

a genus in North America, as well as how forests naturally regenerate following ash mortality 

(Brunet and Von Oheimb 1998, Taiwo et al. 2018).  

Ash persistence in a forest is typically maintained through seed drops during mast years 

which occur up to every 5 years for F. pennsylvanica and F. americana (Bonner and Karrfalt 

2008). Seed bank composition for a given species can be classified as transient or persistent, 

wherein transient seed banks are composed of seeds that only remain viable for one germination 

cycle (typically one calendar year), and persistent seed banks remain viable through at least the 

second germination season. Furthermore, persistent seed banks can be classified as either having 

short or long-term persistence, with suggested viability thresholds at two and six germination 

seasons, respectively (Walck et al. 2005). Ecosystems generally maintain both transient and 

persistent seed banks. Although ash seeds exhibit complex dormancy and can be artificially 

stored for periods of years (no loss in viability was noted for green ash seeds stored for 7 years in 

regulated conditions) (Bonner and Karrfalt 2008), ash usually germinate in the spring following 

their dispersal, and as such do not form a persistent seed bank (Taylor 1972, Kashian 2016).  

 Regardless of whether ash species are able to persist via their seedbank, the loss of 

mature canopy dominant ash trees will result in canopy gaps in the forest. Forest canopy loss can 

result in a disruption and redistribution of a variety of ecosystem resources, including moisture, 

nutrient levels, and light exposure (Ford et al. 2011). Much of the prior research done examining 

canopy gap dynamics has focused upon more sudden canopy gap formation, typically associated 

with windthrow or logging. Such gaps cause photodamage (Jones and Thomas 2004), disruptions 

to microclimate, increased disturbance to understory and soil (Schaetzl et al. 1988, Gray et al. 
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2002), and often leave the forest more vulnerable to weather events such as storms (i.e. more 

susceptible to damage and less resilient) (Garber et al. 2010).  

However, ash death from EAB is slow, and dead standing trees may remain in forests for 

years which results in a more gradual gap formation (Davis et al. 2017). This slower gap 

formation associated with EAB may lessen the effects typically associated with suddenly formed 

canopy gaps. Few studies have focused on gradual gap formation. Of the studies that have 

examined this, none of which were specific to EAB, gradual gaps created by standing dead trees 

were found to create only a limited increase in resource availability, such as light or access to 

bare soil, in comparison to sudden gaps (Schaetzl et al. 1988, Gray et al. 2002). In a study of 

second-growth forests of the southern Appalachians, gradual gaps were shown to be less 

effective at promoting long-term tree species diversity and seedling regeneration with the 

exception of Acer rubrum (red maple) seedlings whose densities did increase following gap 

formation (Beckage et al. 2000). While sudden canopy gaps create greater disturbance to the 

understory, such as increased mineral soil exposure and light availability, this may be less severe 

during the formation of gradual gaps (Schaetzl et al. 1988, Gray et al. 2002). Furthermore, the 

regeneration response of woody species in the understory following gap formation can be 

actively suppressed by an herbaceous or shrub layer, particularly due to the lack of severe 

understory disturbance during gradual gap formation that may be important for woody seedling 

germination and recruitment (Beckage et al. 2000, Davis et al. 2017). 

The gradual gap formation caused by emerald ash borer mortality can result in 

differential forest responses based upon the species composition of the forest. A study analyzing 

growth rates of forests dominated by green ash in northwestern Ohio from 1990-2010 showed 

that the species second-most abundant to ash, Acer spp. [A. rubrum and Acer saccharinum (silver 
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maple)], responded to ash mortality with an increase in radial growth and an advancement of 

crown class, particularly in suppressed (receiving no direct sunlight) and intermediate (just 

below the general canopy, receiving little sunlight) trees (Costilow et al. 2017). This conclusion 

is in support of a growth response hypothesis suggesting immediate and positive effects on the 

growth rates of the existing forest sub-canopy in response to the creation of canopy gaps (Jones 

and Thomas 2004, Hart and Grissino-Mayer 2008).  

Because tree mortality as a result of invasive insects such as EAB creates canopy gaps, 

some hypothesize that infestation can facilitate the spread of invasive plant species (Smith 2006, 

Eschtruth and Battles 2009, Gandhi and Herms 2010, Hausman 2010). Specifically, because 

many invasive plant species are shade intolerant, they are frequently found in areas where light is 

less limited by interspecific competition (Knapp and Canham 2000). Thus, invasive species may 

be more likely to colonize under canopy gaps. Relaxed resource competition, aggressive invader 

species characteristics (e.g. high fecundity and rapid growth rates), high propagule pressure 

(defined as the number and distribution of arriving plant propagules) due to seed dispersal 

facilitated by proximity of edge to transportation corridors, and forest stand age also contribute 

to the abundance and spread of invasive plant species (Flory and Clay 2006, Eschtruth and 

Battles 2009, Dillon et al. 2018).  

Therefore, when canopy gaps become more abundant as a result of tree mortality, the 

potential of the spread of gap-obligate, invasive plant species may increase (Knapp and Canham 

2000, Eschtruth and Battles 2009). One study examining this found that ash decline due to EAB 

was associated with increases in the radial growth of invasive Lonicera maackii (Amur 

honeysuckle) and greater abundance of L. maackii seedlings (Hoven et al. 2017). Therefore, in 
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locations where invasive species are already present and established, ash death may result in 

further establishment and spread of invasive plant species. 

Beyond the threat of invasive plants, it is also important to understand how native species 

and overall species composition might change post-EAB. Indeed, the decline of endemic 

dominant tree species has historically altered forest community composition significantly. For 

example, the successional response following Tsuga canadensis (eastern hemlock) mortality due 

to Adelges tsugae (hemlock woolly adelgid) infestations favored Quercus velutina (black oak), 

A. rubrum (red maple), Sassafras albidum (sassafras), Betula lenta (black birch), Betula 

alleghaniensis (yellow birch), and Fagus grandifolia (American beech) depending on pre-

existing forest characteristics (Small et al. 2005, Gandhi and Herms 2010). Several studies have 

investigated the successional response and subsequent changes in forest community structure as 

a result of EAB-induced ash mortality. One study found that although no increase in small 

woody stems was found following an EAB simulation treatment in Michigan, individual plant 

species densities did change, such as an increase in A. rubrum and B. alleghaniensis densities 

(Davis et al. 2017).  

Edge Effects 

A forest edge is defined as a transitional zone between a mature forest and a clear-cut or 

open area. This transitional zone represents a vastly different habitat and microclimate when 

compared to the interior (core) of the forested ecosystem (Chen and Franklin 1992). Abiotic 

differences at the forest edge include an increase in wind, sun, and exposure to weather events 

and storms (Laurance et al. 2007). Meanwhile, biotic differences between edge and core include 

differential plant species composition, increased abundance of invasive plant species, and 

increased stress and mortality of edge trees (Chen and Franklin 1992, Hunter and Mattice 2002, 
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Gandhi and Herms 2010). These different conditions experienced along the forest’s edge are 

called edge effects. The impact that such edge effects have on the interior of the forest steadily 

decreases as distance from the edge increases (Chen and Franklin 1992).  

Previous studies have speculated that edge effects could impact forest responses to EAB-

induced ash mortality, but to date no studies have directly quantified these effects (Orwig and 

Foster 1998, Herms et al. 2008, Gandhi and Herms 2010). Furthermore, because Agrilus spp. 

have consistently been shown to preferentially colonize stressed trees (McCullough et al. 2009, 

Siegart et al. 2010, Tluczek et al. 2011) and appear to prefer high-light environments (Anderson 

1944, Smith 2006), it is possible that they may preferentially infest trees in the edge of forests.  

Furthermore, the impact of EAB and its ecological consequences has not been thoroughly 

studied outside of Ohio and Michigan where the infestation originated. However, the abundance 

of ash and tree species composition varies in other parts of the country. It is therefore important 

to understand the impacts and forest responses to EAB in other regions of the country, as 

differences in plant community composition may result in differential forest responses long-term.  

To that end, EAB infestation was first observed in Roanoke, VA in 2015 and officially 

confirmed in 2016 (O’Bryan 2016, Virginia Department of Forestry 2019). The ultimate purpose 

of our study was to 1) document the impacts of EAB and forest responses in the Roanoke Valley 

of Virginia, and 2) quantify the impact of edge effects on forest invasion of EAB, subsequent 

mortality of ash trees, as well as the role edge effects play in forest regeneration post-EAB. With 

regards to general forest impacts, it was hypothesized that as ash mortality progressed, 1) there 

would be a measurable increase in the woody understory as regeneration occurs, and 2) the 

number of ash seedlings would decrease over time. In terms of edge effects, we hypothesized 

that 1) ash dieback and mortality would be quickest and most severe at the forest edge, and 2) as 
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canopy cover declined due to ash mortality, there would be an increase in invasive species, 

particularly within the forest edge.  

Methodology 

Study Area & Design 

Twelve study sites were located on both public and private lands within the counties of 

Roanoke, Montgomery, Botetourt, and Bedford Counties, Virginia (Figure 1). All relevant 

permits and permissions were acquired for all sites. All sites were mixed hardwood forests. As 

with most forested areas in the southern Appalachians, these sites were secondary successional 

forests, and the most abundant species on average across all sites were Nyssa sylvatica (black 

gum), Prunus spp. (P. avium and native P. serotina; cherry spp.), Acer saccharum (sugar maple), 

Fraxinus spp., Acer rubrum (red maple), Carya glabra (pignut hickory), Quercus alba (white 

oak), Oxydendrum arboreum (sourwood), Juniperus virginiana (eastern red cedar), and 

Ailanthus altissima (invasive; tree of heaven) (Table 1).  

 Additionally, all study sites were selected based on their location on the forest edge (e.g. 

bordering pastures, open fields, or powerline corridors). Of the twelve sites, six were sites with 

ash trees and six were sites with no ash trees (i.e. control sites). The purpose of control sites were 

primarily to ensure that changes in variables such as canopy cover and/or woody vine cover 

could be attributed to loss of ash trees, and not due to other phenomena such as weather events. 

While species composition was inherently different due to differences in ash versus non-ash 

forests, efforts to ensure that the control sites were similar otherwise were made. Specifically, 

control sites were all deciduous forests and the transects at each site had similar average basal 

areas to the ash sites. Specifically, ash site transects averaged 1.52 +/- 0.10 m2 in basal area and 

control site transects averaged 1.37 +/- 0.15 m2 in basal area.  Furthermore, the average elevation 

at ash versus control sites was similar with ash sites on average being at 452.9 +/- 36.8-m and 
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control sites on average being at 467.2 +\- 35.8-m. At each study site, 2-3, 10-m x 50-m belt 

transects were established (three transects per site were established whenever possible), 

extending from the forest edge into the core (Figure 2). As in Klooster et al. (2013), all transects 

were established a minimum of 20-m apart from adjacent transects, with two exceptions in which 

transects were placed 10-m apart due to the length of the edge of the forest stand.  

Because the length that edge habitat extends into a forest varies from location to location, 

the border between “edge” and “core” habitat of each transect (Figure 2) was determined based 

on the following habitat characteristics: reduced (edge) versus full (core) canopy height, greater 

presence of trees <12 cm DBH (edge), and the general presence (edge) versus absence (core) of 

herbaceous ground cover. Importantly, the end of the 50-m transect in the forest core was 

required to be a minimum of 50-m from any other edges, thus precluding smaller forest 

fragments from this study. Finally, since EAB is known to be able to infest trees ≥2.5-cm DBH 

(Herms and McCullough 2014), ash sites were required to have at least one ash tree ≥2.5-cm 

DBH within both the edge and the core of each transect, whereas control sites were characterized 

as having no ash trees ≥2.5-cm DBH within each transect.  

Finally, four 1-m by 1-m microplots were established in each transect (Figure 2) and marked 

with survey stakes so as to be able to survey the same spot each year. Specifically, within each 

transect at control sites, two microplots were located in the middle of the transect (widthwise) at 

0-m and 50-m (Figure 2). The other two microplots were placed in the middle of the transect 

(widthwise) halfway into the edge and halfway into the core, respectively. In order to ensure that 

changes in canopy and/or ash seedling numbers were captured at ash sites, an identical scheme 

was followed excepting whichever microplot in both the edge and core was closest to an ash tree; 

this microplot was placed 1-m away from the base of the ash tree. If both microplots initially 
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appeared to be equidistant from ash trees in either the edge or the core, one microplot was moved 

away from the ash tree in order to clear the ash canopy cover.  

Site Surveys 

Sites were surveyed, in June-September (prior to leaves beginning to drop) annually from 

2017-20201. Specifically, within the transects, all trees ≥2.5-cm DBH were identified and their 

DBH measured. Tree location by distance along the transect was noted so that individual trees  

could be tracked across all years. Trees were classified as “small” (2.5-12.5-cm DBH) or “large” 

(>12.5-cm DBH). For all ash trees, regardless of size classification, any signs of EAB infestation 

were noted: D-shaped exit holes, leaf thinning or dieback, epicormic shoots, bark flecking, and 

S-shaped larval galleries. Canopy dieback was quantified using a 1-5 dieback scale as outlined in 

Smith (2006) (Table 2, Figure 3). To ensure that microplot data could be compared from year-to-

year, in addition to marking the locations with permanent stakes, orientation of the 1-m by 1-m 

quadrat was always aligned to the cardinal directions. For microplots, all woody seedlings <2.5-

cm were identified, counted, and classified as >30.5-cm or <30.5-cm. Woody vines were also 

quantified based off of estimated percent cover and classified based on size (>30.5-cm or <30.5-

cm). Canopy cover directly above the center of each microplot was measured using a spherical 

crown densiometer, with values taken at each of the four cardinal directions and averaged.  

Data Analyses  

 Relative abundance was calculated for each species by dividing the total number of 

individuals of a species by the total number of trees at a transect. This value was averaged across 

all sites for both size classes in order to characterize species abundance across sites. The four 

initial canopy cover values taken at each microplot were averaged and multiplied by a factor of 

 
1 Dr. Elizabeth Gleim collected data across all study years. Catherine Kirkpatrick collected data from 2017-2018, 

Madison Simms Hill collected data from 2018-2019, and Bronte Hoefer collected data from 2019-2020. 
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1.04 and divided by 100 to result in the percent canopy cover at each microplot (Forestry 

Suppliers, Inc.).  

 Shannon Diversity Index (SDI) was calculated for all transects at both ash and control 

sites, using the equation:  

𝐻 =  − ∑ 𝑝𝑖 𝑙𝑛𝑝𝑖

𝑆

𝑖=1

 

Where H = SDI value, s = the total number of species in the community (species richness), pi = 

the proportion of species i to the total number of species, and ln = the natural logarithm. Notably, 

to capture changes in biodiversity due to mortality of ash trees for any given year, individual ash 

trees that had a dieback score of 5 were considered “removed” from the transect and thus 

excluded from these calculations, along with any trees of other species that had died during the 

course of the study.  

 Further, to calculate Shannon’s equitability (EH), e.g. species evenness, the maximum 

possible H value at each transect was calculated using the same equation assuming equal 

abundance of all species, and this value was deemed Hmax. A proportion of H to Hmax was 

calculated to determine EH, and thus the resultant value fell within a normalized range of 0-1, 

with a value closer to 0 indicating lesser species evenness, and a value closer to 1 indicating 

higher species evenness.  

 For all analyses, variables were examined to determine whether they were normally 

distributed by examining histograms and normal probability plots of residuals. Dieback score 

data were normally distributed. Data for canopy cover, SDI, Shannon’s equitability, woody vine 

species, and ash seedlings were not normally distributed. However, canopy cover, SDI and 
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Shannon’s equitability data were successfully transformed using a Johnson transformation. Ash 

seedlings and vine data could not be successfully transformed. 

 For dieback scores and the transformed canopy cover, SDI, and Shannon’s equitability 

data, a mixed effects linear regression model with random effect for site was run (Minitab 19, 

2019). This model was utilized as it accounted for repeated measures and clustering by site. In 

the case of canopy cover, SDI, and Shannon’s equitability, the model was specifically used to 

examine differences between ash and control sites and between edge and core across all years. 

For dieback scores, this model was used to examine differences between years and between large 

and small trees at the edge and core of ash sites. For instances in which interactions between 

variables were identified in the initial model, the specific nature of the interactions was 

determined with mixed effects linear models which examined just the two interacting 

variables(Minitab 19, 2019).  

 Much of the woody vine cover was attributable to native species, and Rubus spp. were 

only identified on a genus-level and not distinguished between native and non-native species. 

Thus, data for non-native and native woody vine species, both which exhibit invasive qualities, 

were pooled for analyses and averaged by site. Due to differences in sampling estimation in 

2017, data for woody vine species were only analyzed across study years 2018-2020. Because 

data was not normally distributed, they were categorized into three groups: 1) sites at which 

woody vine cover was <1%, 2) sites at which woody vine cover was 1-10%, and 3) sites at which 

woody vine cover was >10%. The categorized groups were then analyzed using a mixed ordinal 

logistic regression model with a random effect for site in order to compare woody vine cover in 

the edge versus core at ash versus control sites over time (StataCorp, 2021). This model was 

selected as it was appropriate for ordinal response data while also still accounting for repeated 
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measures and clustering by site. The model was built in a step-wise fashion in which an initial 

model was built that included main effect terms and all possible two-way interactions between 

variables. Non-significant two-way interactions were then removed one at a time, always 

removing the least significant variable, until only significant variables and main effect terms for 

variables of interest remained.  

Data for number of ash seedlings present at ash site microplots over time were averaged 

by site. Since data violated assumptions of normality and could not be successfully transformed, 

a mixed effects negative binomial regression with a random effect for site was used to determine 

differences in the mean number of ash seedlings at ash sites between edge and core across time 

(StataCorp, 2021). This model was selected because it accounted for the high number of zeros in 

this data set while also accounting for repeated measures and clustering by site. Step-wise model 

selection was done as previously described in order to determine significance of a two-way 

interaction between edge vs. core and year, retaining main effect terms regardless of 

significance.

Results 

Canopy Cover 

Ash sites had significantly higher mean canopy cover (90.84 +/- 0.53%) than control sites 

(83.56 +/- 1.61%) (F1.00, 27.29 = 9.28, p = 0.005) (Figure 4). A significant interaction between edge 

versus core and year was also found (F3.00, 29.31 = 8.38, p < 0.000; Figure 5). There was 

significantly lower conditional mean canopy cover in the edge (84.58 +/- 2.82) compared to the 

core (93.91 +/- 0.50) in the year 2017 (p = 0.014), but this difference was not found to be 

significant for any other study year (Figure 5). No significant changes in mean canopy cover in 

the edge were noted over time (Figure 5). Mean canopy cover in the core fluctuated throughout 
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the study, having significantly lower cover in 2018 (87.52 +/- 2.65, p = 0.002) and 2020 (88.87 

+/- 1.07, p = 0.005), but significantly higher in 2017 (93.91 +/- 0.50 p = 0.000) in comparison to 

the other study years (Figure 5).  

Dieback Scores 

Trees in the core had significantly higher mean dieback scores (2.82 +/- 0.18) than trees 

in the edge (2.26 +/- 0.17) (F1.00, 59.39 = 13.13, p = 0.001) (Figure 6). There was a significant 

interaction between size class and year (F3.00, 59.00 = 3.55, p = 0.020) wherein large trees had 

significantly lower mean dieback scores in 2017 (2.09 +/- 0.30, p = 0.001) and 2018 (2.24 +/- 

0.42, p = 0.021) in comparison to 2020 (3.80 +/- 0.25, p = 0.001), but not in 2019 (3.31 +/- 0.36, 

p = 0.088) (Figure 7). The increase in mean dieback score over time for small trees was not 

significant for any year. The mean dieback score of large trees did not significantly differ from 

small trees during any study year except 2020, in which large trees (3.80 +/- 0.25) had 

significantly higher dieback scores than small trees (2.40 +/- 0.32, p = 0.028). Notably, small 

trees appear to be progressing in mortality much more gradually than large trees. For example, 

mean scores of small trees progressed from 1.99 (+/- 0.31) in 2017 to 2.40 (+/- 0.32) by 2020, 

while average scores of large trees progressed from 2.09 (+/- 0.30) in 2017 to 3.80 (+/- 0.25) by 

2020. 

Shannon Diversity Index and Shannon Equitability 

Ash sites had significantly higher mean SDI scores (2.21 +/- 0.07) than control sites (1.79 

+/- 0.06) (F1.00, 42.87 = 60.99, p = 0.000). No significant differences in conditional means were 

noted between study years (F3.00, 36.85 = 0.12, p = 0.950) nor was there a significant interaction 

between ash and control and year (F3.00, 36.85 = 0.09, p = 0.965) (Figure 8). 
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Conversely, there were no significant differences between the mean EH scores of ash 

(0.039 +/- 0.43) and control sites (-0.052 +/- 0.43)(F1.00, 9.99 = 0.05, p = 0.825) nor was a 

significant interaction between ash and control and year found (F3.00, 28.99 = 0.54, p = 0.662). 

However, there were significant changes in EH scores over time. A significant decrease in the 

transformed mean equitability value was noted between 2018 (0.11 +/- 0.311) and 2019 (-0.15 

+/- 0.311)(F3.00, 28.99 = 4.11, p = 0.015) (Figure 9). 

Woody Vine Cover 

There were no significant changes in woody vine cover over time. However, the edge of 

the forest did have significantly higher woody vine cover (14.22 +/- 3.02%) compared to the core 

(6.51 +/- 3.27%) [OR = 22.58, z = 3.93 (95% CI: 4.77, 106.814), p = 0.000] (Figure 10). 

Furthermore, ash sites had significantly higher mean percent woody vine cover (20.72 +/- 

8.17%) as compared to control sites (7.13 +/- 3.67%) [z = 2.89 (95% CI: 0.119, 0.626) p = 

0.004]. 

Ash Seedlings 

The edge of ash sites did have significantly lower mean number of ash seedlings (8.04 +/- 

0.98) than the core (20.2 +/- 2.27) (Table 3, Figure 11). Although year was not significantly 

associated with the average number of ash seedlings at ash sites, there was a steady decline in the 

average number of ash seedlings at ash sites over time with the difference between the average 

number of ash seedlings in 2017 (20.6 +/- 2.46) and 2020 (10.5 +/- 1.35) approaching 

significance (Table 3).  

Discussion 

To date, all previous studies examining the ecological impacts of EAB invasion have 

occurred near the epicenter of invasion in Ohio and Michigan (Smith 2006, Klooster et al. 2014, 
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Kashian 2016, Costilow et al. 2017, Davis et al. 2017). Therefore, this is the first study 

examining ecological impacts of EAB outside of the initial epicenter and thus provides valuable 

insight on EAB invasion in other ecosystems with different plant community composition and 

climate. This is also the first study to examine the role of edge effects in EAB infestation 

dynamics and forest responses. 

Mean dieback scores of 1.99 and 2.09 in small and large trees, respectively, in 2017 

indicate that both large and small trees were either un-infested or in the very early stages of EAB 

infestation at the beginning of the study. This, in conjunction with the fact that dieback scores 

have increased over time, indicates that we were able to begin monitoring trees early on in EAB 

invasion in the Roanoke Valley and thus have been able to document EAB infestation dynamics 

and forest responses as ash tree mortality progressed.  

The mean dieback score of large trees was significantly higher than in small trees only in 

2020, supporting prior research indicating that larger trees are likely to progress in mortality 

more rapidly than do small trees (Robinett and McCullough 2019). Indeed, Robinett and 

McCullough (2018) found a negative relationship between average DBH and white ash survival 

rate. Specifically, they hypothesized that larger, older white ash may exhibit less vigor than 

smaller, younger trees (MacFarlane and Meyer 2005), thus attracting ovipositing female EAB 

adults who prefer stressed trees (McCullough et al. 2009, Siegart et al. 2010). Furthermore, EAB 

has been shown to prefer to feed on leaves grown in the sun, perhaps due to higher total protein 

concentration in such foliage (Chen and Poland 2009). Because larger trees are higher in the 

canopy and thus receive more sunlight, they may be preferable to smaller trees which receive 

less sunlight. Additionally, it has been suggested that EAB use visual cues to locate host trees 
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(McCullough et al 2009). Therefore, smaller trees may simply be obscured by the thick canopy 

of surrounding foliage whereas canopy-dominant mature ash are not. 

Interestingly, while the mean dieback score increased somewhat for small trees, the 

change was not significant. Conversely, the mean dieback score for large trees was significantly 

higher and progressed more rapidly over time. This rapid decline may be due to the increase in 

stress and subsequent decrease in tree vigor as EAB infestation progresses in a tree. Importantly, 

progression of mortality is based upon a number of factors - for example, large trees may reach 

peak infestation earlier due to being infested first (Robinett and McCullough 2019). Large ash 

trees may also exhibit lower vigor, such as ability to respond to pests and ability to survive in 

less-favorable environmental conditions, in comparison to smaller trees (Marshall et al. 2009, 

Porter 2009). Furthermore, several studies have noted that trees with rougher bark are more 

suitable oviposition sites for adult EAB females (Anulewicz et al. 2006, Marshall et al. 2009). 

The deeper bark furrowing characteristic of mature ash trees may be preferable to the shallower, 

smoother bark of young trees, thus potentially leading to earlier colonization and/or higher larval 

loads.  

Contrary to our hypothesis that trees would die more rapidly in the edge, trees in the core 

had significantly higher mean dieback scores than trees in the edge. One might postulate that 

perhaps higher densities of mature trees in the core were attracting higher densities of EAB. 

However, there were no differences between the density of large trees in the edge versus the core 

of ash sites (data not shown). Furthermore, previous research has shown that EAB infestation is 

not host density-dependent (Smith 2006). An alternative hypothesis to explain this phenomenon 

may be that ash trees are experiencing higher competition with surrounding overstory species in 

the core, and subsequently less-ideal growing conditions as compared to the edge where there is 
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increased light availability. Indeed, increased competition with overstory trees has been 

previously suggested to cause higher mortality for small trees in these conditions (Robinett and 

McCullough 2019). It is also possible that the dispersal of EAB through the core of the forest 

rather than along the edges was preferable, although additional research would be needed to 

explore this hypothesis.   

In terms of the length of time it took for ash trees to die, past studies have indicated that large 

and small ash trees generally reach full mortality within 2-5 years following initial infestation 

(Smith 2006, Herms and McCullough 2014, Klooster et al. 2014). However, small trees in our 

study appear to be progressing in mortality much more gradually than large trees. Notably, 

Fraxinus pennsylvanica and F. americana, the species present at our study sites, have been 

found to exhibit varying rates of mortality. For example, some studies have documented little-to-

no resistance and thus mass mortality within 2-5 years (Gandhi and Herms 2010, Klooster et al. 

2014), while other studies have noted extended morbidity lasting beyond 5 years for large trees, 

with extremely variable survival rates by location (Knight et al. 2013, Robinett and McCullough 

2019). In these studies, it was postulated that survivability may be related to larval densities in 

trees and the size of the tree, as well as the high density of smaller ash in forest stands. 

Therefore, the more gradual decline seen in small ash trees may be attributable to size of tree 

EAB adults prefer, differential habitat characteristics based off of the size and relative age of the 

ash tree, biological differences between older and younger trees, or a combination of these 

factors.  

Mean percent canopy cover was significantly higher at ash sites in comparison to control 

sites. This is likely due to the ecological conditions characterizing the sites – the edge of several 

ash sites tended to be remarkably more overgrown than control sites, and thus the dense mid-
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story of these edges may have artificially increased canopy cover readings as any cover over 

waist-height would have been included in canopy cover estimations. Notably, a denser mid-story 

is often indicative of an area that has been more recently or more frequently disturbed. It is 

unclear whether this difference is characteristic of ash-dominant forests in the region, or if this is 

a random occurrence. It is of note, however, that because of the tendency of ash species to 

opportunistically regenerate in canopy gaps with increased sunlight, ash has tended to be an 

early-successional species that progresses to canopy dominance in secondary forests following 

logging (Clebsch and Busing 1989) and other forest pest events (Smith 2006). 

 While overall change in canopy cover over time was found to be significant, no 

significant differences in canopy cover at the edge of our sites was noted over time. Mean 

canopy cover was significantly lower in the core of our sites in 2018 and 2020, but significantly 

higher in 2017, and therefore no consistent significant upward or downward trend in canopy 

cover was noted across all study years. While this could indicate expansion and contraction of 

the canopy over time, this trend could more plausibly be attributed to differences in sampling 

estimation by researchers between study years. 

 While ash sites did exhibit significantly higher mean SDI scores than control sites, there was 

no significant difference in mean EH scores between ash and control sites. Further, while no 

noticeable change in SDI occurred over time, mean EH score decreased significantly between 

study years 2018 and 2019. This difference may be attributable to the sharp increase in ash tree 

mortality observed between the two study years, lowering relative evenness as ash trees reach 

total mortality and were subsequently removed from calculations. It is plausible to hypothesize 

that loss of biodiversity may occur in a longer time frame as ash continues to progress toward 

total mortality and its presence as a genus is gradually extirpated. Furthermore, changes in 
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overall species evenness may occur should proportions of species change in response to canopy 

gap formation. However, patterns in species evenness with succession are poorly understood due 

to their inherent complexity (Schaetzl et al. 1988, Beckage et al. 2000). Regardless, high levels 

of biodiversity and even distribution of species are both important to maintaining ecosystem 

resiliency with regards to secondary-successional trajectories post-disturbance (Connell 1978, 

Derroire et el. 2016). Even with loss of ash as a genus in these ecosystems due to EAB, the 

ecosystems may remain resilient due to their high biodiversity and relative evenness. 

With regards to ash regeneration through seed germination and seedling survival, while the 

current study did not document significant declines in the number of ash seedlings over time, 

consistent declines were observed and approached significance by the end of the study.  This is 

in line with previous studies which have found that ash do not form a persistent seed bank 

(Taylor 1972, Kashian 2016). Accordingly, as reproductively mature ash continue to progress to 

full mortality, the ash seedbank ceases regeneration and number of ash seedlings decreases 

(Klooster et al. 2014).  

Furthermore, the edge of ash sites had a lower presence of ash seedlings than the core 

(Clebsch and Busing 1989, Smith 2006). This difference was consistent across study years prior 

to widespread mortality of reproductively mature ash trees. This difference between the edge and 

core is perhaps due to increased environmental stress and competition present at the forest edge.  

Notably, there was significantly higher woody vine cover present in the edge of ash sites than 

the core. Furthermore, invasive woody vine species were also significantly more abundant at ash 

sites. Because these trends were present from the beginning of the study, the presence of these 

invasive species is unlikely to be related to the invasion of EAB. Invasive woody plant species 

are often associated with forest edges because they tend to be adapted to disturbance, and edge 
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spaces provide an optimal “point of invasion" for propagules and seeds (Flory and Clay 2006). 

However, the presence of these invasive species does have implications for, 1) why fewer ash 

seedlings are present in the forest edge, and 2) the forest successional response to ash mortality. 

Notably, the increased vine cover at the edge may mitigate some microclimatic alterations in soil 

conditions associated with canopy gap formation. However, because invasive woody plant 

species are extremely disturbance-adapted, it is possible that they may outcompete ash seedlings 

observed in the edges of study sites over time. As ash in the edge continue to progress towards 

total mortality and thus cease seedbank regeneration, ash seedling recruitment and survival could 

cease entirely, resulting in the potential extirpation of ash in forest edges. Therefore, as is 

consistent with a number of previous studies, it is expected that the potential for survival of ash 

as a genus at these sites may largely hinge upon the ability of currently established ash seedlings 

in the forest core to successfully compete with other seedlings (Davis et al. 2017) and evade low-

density EAB populations in the future (Klooster et al. 2014). 

Conclusions 

 Increased environmental stress at the forest edge does not appear to impact ash mortality 

over time. Consistent with the findings of prior research, larger trees, regardless of proximity to 

the forest edge, are infested first and increase in mortality more rapidly than smaller trees 

(Robinett and McCullough 2018). As dieback of reproductively mature ash trees progresses, 

mean number of ash seedlings, although not yet statistically significant, is steadily declining. 

Because invasive woody vine species are almost exclusively present in the edge of ash sites in 

conjunction with potentially lower ash seed production at the edge, ash seedlings may decline 

and ultimately be extirpated over time at the forest edge. Therefore, the survival of ash within 

these ecosystems may hinge upon the ability of ash seedlings in the core to successfully 
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outcompete other species and evade EAB infestation in the future. In areas in which substantial 

loss due to EAB has not yet occurred, future studies may be warranted to examine ash seed 

production and ash seed banks at the edge and core of forests in order to better understand these 

trends.  

Finally, a previous study by Costilow et al. (2017) conducted in northwest Ohio 

demonstrated that Acer spp. surrounding ash tended to increase in crown class and radial growth 

rate following EAB infestation and subsequent mortality. Therefore, the use of increment core 

sampling as per Costilow et al. (2017) to further investigate the potential radial growth response 

of small and large trees surrounding dead ash as a differential forest response to gap formation is 

warranted. Additional analyses should be explored in order to forecast which species are likely to 

replace ash in forests in southwest Virginia. 
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Tables and Figures 

Table 1: Top ten species for mean species abundance value across all study sites (ash and 

control) and all size classes (small and large). 

Species Mean Species Abundance +/- SE 

N. sylvatica 13.83 +/- 20.48% 

Prunus spp. 9.90 +/- 11.86% 

A. saccharum 5.13 +/- 6.65% 

Fraxinus spp.* 5.54 +/- 6.57% 

A. rubrum 4.93 +/- 2.56% 

C. glabra 4.26 +/- 3.73% 

Q. alba 3.89 +/- 2.02% 

O. arboreum 3.80 +/- 6.24% 

J. virginiana 3.32 +/- 5.54% 

A. altissima 3.10 +/- 2.22% 

* As study sites were selected based off of either presence or lack of Fraxinus spp., their mean species 

abundance is likely skewed. At ash sites, mean abundance of Fraxinus spp. was 11.07+/- 0.02%. 

 

Table 2: Dieback scoring (1-5) parameters used in the current study as per Smith (2006).

 

 

 

 

 

Dieback Score Canopy Characteristics 

1 Healthy; no infestation 

2 Minor thinning, no substantial dieback 

3 10-49% dieback 

4 50-99% dieback 

5 100% dieback; complete mortality 

Table 3: Mixed effects negative binomial regression model for the prediction of ash seedling 

counts at ash sites. 

 

Variable Coefficient (SE) IRR (95% CI) P 

Location 

          Edge 

          Core 

           

 

Reference 

-0.694 (0.227) 

 

Reference 

0.50 (0.32, 0.78) 

0.002 

Year 

          2017 

          2018 

          2019 

          2020 

 

Reference 

-0.281 (0.296) 

-0.357 (0.297) 

-0.571 (0.302) 

 

 

Reference 

0.75 (0.42, 1.35) 

0.70 (0.39, 1.25) 

0.56 (0.31, 1.02) 

0.299 

 

0.342 

0.230 

0.059 

Constant 2.954 (0.371) NA < 0.001 

SE = Standard error; IRR = Incidence rate ratio; NA = Not applicable 
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Figure 1: Map of study site locations in the Roanoke Valley of Southwest Virginia. Blue 

markers represent control sites, red markers represent ash sites.  

 

 

Figure 2: General transect layout at study sites. Numbered hexagons represent microplots.  
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Figure 3: A visual representation of the 1-5 dieback canopy rating scale, where a score of 1 

indicates a healthy tree with no visible signs of infestation, and a score of 5 indicates a tree with 

100% mortality (Image Credit: Klooster et al. 2013). 

 

 

 

 

Figure 4: Mean canopy cover at ash and control sites across study years. Error bars denote 

standard error.  

60

65

70

75

80

85

90

95

100

2 0 1 7 2 0 1 8 2 0 1 9 2 0 2 0

P
E

R
C

E
N

T
 C

A
N

O
P

Y
 C

O
V

E
R

Ash Control



39 
 

 

Figure 5: Mean canopy cover between edge and core from study years 2017-2020. Error bars 

denote standard error of the mean. 
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Figure 6: Mean dieback score of ash trees at the edge and core of transects. Different letters 

denote values that are significantly different (p < 0.05). Score of 1 indicates no infestation and 

score of 5 indicates a completely dead tree. 
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Figure 7: Mean dieback score of large (>12-cm DBH) and small (≥2.5-cm <12-cm DBH) ash 

trees during study years, where a score of 1 indicates no infestation and score of 5 indicates a 

completely dead tree. Error bars denote standard error.  
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Figure 8: Shannon Diversity Index (SDI) values of tree species at ash and control sites across all 

study years. Asterisks denote outlier values. Whiskers denote upper and lower quartiles. Data 

shown in graph is untransformed data – data was transformed for analyses using a Johnson 

Transformation. Bars sharing the same letter are not significantly different (p > 0.05), and 

significance refers to transformed values. 

 

 

 

a a a 
a 

b b b b 



43 
 

 

Figure 9: Conditional mean Shannon Equitability (EH) values for tree species at ash (A) and 

control (C) sites across all study years. Data transformed using a Johnson Transformation. Error 

bars denote standard error. 
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Figure 10: Mean percent cover of woody vine species (non-native and native species) over time 

at ash and control microplots between edge and core. Note that 2017 data were recorded in 

different units than data from following years and were thus excluded from data analyses. Error 

bars represent standard error of the mean.  
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Figure 11: Mean number of ash seedlings over time between edge and core microplots at ash 

sites. Error bars denote standard error of the mean.  
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