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ABSTRACT:  

Annual Lyme disease cases continue to rise in the U.S. making it the most reported 

vector-borne illness in the country. The pathogen (Borrelia burgdorferi) and primary vector 

(Ixodes scapularis; blacklegged tick) dynamics of Lyme disease are complicated by the 

multitude of vertebrate hosts and varying environmental factors, making models an ideal tool for 

exploring disease dynamics in a time- and cost-effective way. In the current study, LYMESIM 

2.0, a mechanistic model, was used to explore the effectiveness of three commonly used tick 

control methods: habitat-targeted acaricide (spraying), rodent-targeted acaricide (bait boxes), and 

white-tailed deer targeted acaricide (4-poster devices). Work was done to evaluate their 

effectiveness when used alone and in combination with one another. Optimized application 

strategies were also identified. Additionally, pilot work was done to incorporate prescribed fire 

into the model and compare its efficacy to the acaricide-based approaches. It was determined that 

any singular use or combination of methods that included spraying were most effective amongst 

acaricide-based treatments, suppressing the density of I. scapularis nymphs (DON) by >80%. 

Furthermore, the best time to apply treatments was between January and mid-April, and mid-

September to early December. Optimized treatment strategies identified by the model include 

application of treatment twice annually, every other year at a minimum effectiveness of 25%, 

which achieves 80% DON suppression and no increases in I. scapularis nymphs once treatments 

are complete. Interestingly, preliminary work to integrate prescribed fire in the model indicated 

that it achieved 93-100% efficacy in burn years and one-year post burn, making prescribed fire 

more effective than all acaricide-based treatments. Overall, this study illustrates the value in 

using models to identify the best method of blacklegged tick population control that is both time- 

and cost-effective. Future field research should be done to validate the findings of this model.
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INTRODUCTION:  

The blacklegged tick, Ixodes scapularis Say was implicated as the primary vector of the 

Lyme disease spirochete Borrelia burgdorferi sensu stricto (s.s.) (heron, B. burgdorferi) in the 

eastern United States in the early 1980’s (Burgdorfer et al. 1982, Spielman et al. 1985). Ixodes 

scapularis fall within the family Ixodidae, e.g., “hard ticks,” known for the presence of a scutum 

(Oliver 1989) and belong to the Acari subfamily, a subclass of the Arachnida family which 

includes all species of mites and ticks. Meanwhile, Borrelia burgdorferi falls within the family 

Spirochaetaceae and is one of three genospecies to be clearly associated with Lyme disease 

(Rosa 1997).  

As an obligate blood-feeder, I. scapularis ticks typically take two to three years to complete 

the four-stage life cycle consisting of the egg, larvae, nymph, and adult (Oliver 1989). These 

ticks require a single blood meal before molting to the next life stage and hence are labeled as 3-

host ticks. Ixodes scapularis ticks are host generalists, meaning that they are relatively 

indiscriminate in host selection and feed on animals relative to their size at each tick life cycle 

stage (Oliver 1989, Kocan et al. 2015). Larvae and nymphs, or immature ticks, typically take 

blood meals from small and medium sized hosts, mainly white-footed mice (Peromyscus 

leucopus), as well as squirrels, voles, shrews, birds, and domestic animals (e.g., dogs, cats, hogs, 

and cattle) (Ostfeld et al. 1995, LoGiudice et al. 2003). Comparatively, adult ticks typically 

parasitize medium and large-sized mammals, including white-tailed deer (Odocoileus 

virginianus), raccoons (Procyon lotor), coyotes (Canis latrans), and humans (Ostfeld et al. 1995, 

Kocan et al. 2015, Eisen and Eisen 2018).   

 In efforts to monitor disease trends and evaluate prevention and control efforts in the U.S., 

Lyme disease was designated as a nationally notifiable disease in 1991 by the Center for Disease 
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Control and Prevention (CDC) which means that all diagnosed Lyme cases in the U.S. must be 

reported to the CDC (Mead 2015). Since 1991, the number of annually reported Lyme disease 

cases have tripled, while the number of counties reporting high incidence of cases has increased 

320% (Kugeler et al. 2015). Additionally, I. scapularis can also transmit the relapsing fever 

spirochete, Borrelia miyamotoi, as well as the causative agents of anaplasmosis, Anaplasma 

phagocytophilum, and babesiosis, Babesia microti (Piesman and Eisen 2008, Krause et al. 2015, 

Hahn et al. 2016). Importantly, I. scapularis can carry B. burgdorferi, A. phagocytophilum, and 

B. microti as a co-infection, as all three share the same reservoir host, white-footed mice, though 

the prevalence of the coinfection is yet to be established though tick surveillance (Eisen and 

Eisen 2018). 

The general distribution of I. scapularis covers most of the eastern United States, whereas 

majority of Lyme disease cases are restricted to the northeast, mid-Atlantic, and upper Midwest 

(Eisen and Eisen 2018). However, the geographic range of Lyme cases and I. scapularis has 

steadily expanded in the last two decades, with B. burgdorferi and Lyme disease notably 

expanding southward (Lantos et al. 2015). Furthermore, the incidence of Lyme disease and other 

diseases vectored by I. scapularis have become more prevalent (Eisen et al. 2017). Notably, the 

high incidence of Lyme disease in the northeastern and upper-midwestern states is believed to be 

in part due to more aggressive questing behaviors exhibited by northern populations of I. 

scapularis, particularly the nymphs (Arsnoe et al. 2019). Indeed, few I. scapularis nymphs are 

collected in the south (Gleim et al. 2014, Mackay and Foil 2005). Hence, the steadily expanding 

range of I. scapularis and increasing incidence of Lyme disease cases clearly underscores the 

need for effective methods for controlling tick populations and reducing human Lyme disease 

risk. 
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 The first reported cases of Lyme disease in 1975 in Lyme, Connecticut were originally 

thought to be a new form of inflammatory arthritis (Steere et al. 1977). It was not until 1982, that 

the etiological agent, later named B. burgdorferi, was shown to be transmitted by I. scapularis 

ticks (Burgdorfer et al. 1982). Eventually, in 1987, white-footed mice were recognized as the 

most competent reservoir for maintaining B. burgdorferi infection in the eastern U.S. (Donahue 

et al. 1987). Although insect control measures existed well before this, starting in the 1980’s, 

efforts to identify effective tick control methods intensified in conjunction with the progression 

of scientists’ understanding of the then newly emerging, Lyme disease. These approaches 

particularly focused on (and continue today to focus on) controlling ticks within residential 

settings (e.g., people’s yards, playgrounds, etc.) since most Lyme disease cases are acquired in 

people’s backyards (Eisen and Dolan 2016). Furthermore, most human Lyme disease cases are 

the result of bites by infected I. scapularis nymphs. Specifically, nymphs’ small size makes them 

difficult for people to detect and remove in a timely manner, thus leading to the successful 

transmission of the pathogen. Consequently, because nymphs are the life stage most associated 

with human Lyme cases, many tick controls studies have used densities of host-seeking nymphs 

and host-seeking infected nymphs pre- and post-treatment to determine whether the control 

treatment was effective (Spielman et al. 1985).  

One treatment approach that has been extensively examined is the use of synthetic 

chemical acaracides (Eisen and Dolan 2016). Field studies have tested organophosphate 

(chlorpyrifos and diazinon which are no longer in residential use), pyrethroid (deltamethrin, 

bifenthrin, and cyfluthrin), and carbamate (carbaryl) chemical pesticides. These acaracides can 

be applied to an environment in a granule form or broadcast sprayed. The effectiveness of each 

synthetic chemical agent is influenced by the intensity of acaracide spraying, the concentration of 
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the active agent in the acaracide, the length of time the agent is environmentally persistent, and 

the weather (Eisen and Dolan 2016). In terms of weather, the impact of rainfall is unclear as it 

has been suggested to be either beneficial, driving an already applied acaracide deeper into the 

leaf litter, or determinantal, as rainfall could result in acaracide run-off after treatment. Run-off 

of acaracides is particularly concerning as several synthetic acaracides have been shown to be 

highly toxic to aquatic invertebrates and fish. For example, amitraz and permethrin are toxic to 

fish and aquatic arthropods, with the latter also being highly toxic for beneficial terrestrial and 

aerial arthropods like bees (George et al. 2008). 

Though restricted for use near open water and wetlands, many studies have repeatedly 

demonstrated the effectiveness of a single synthetic acaracide application both in residential and 

woodland forest settings. For example, the application of chlorpyrifos, an organophosphate, was 

shown to effectively reduce host seeking I. scapularis nymphs between 84-100% when sampled 

weekly for up to 6 weeks post-treatment (Curran et al. 1993, Allan and Patrician 1995). Even 

though organophosphates have been shown to be an effective tick population control strategy, 

they are no longer in use as they affect non-target species (George et al. 2008). For example, 

organophosphates are toxic to birds, like Bobwhite Quail; Colinus virginianus, should they feed 

on ticks killed by the acaricide and can also be toxic to fish if exposed via runoff (Van Wieren et 

al. 2016). Additionally, while this acaracide is still used in certain agricultural settings, it has 

been banned from use in residential settings due to it being found to cause cancer and other 

illnesses in humans (Gray and Hammitt 2002). Thus, an alternative to organophosphates is 

carbaryl, which when tested in a residential setting at a high concentration (1.5-2.1 kg AI/ha) as a 

single high-pressure barrier spray, achieved at least 90% reduction in questing nymphs for 7-8 

weeks after treatment (Stafford 1991a). 
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An alternative to synthetic acaracides are natural acaricides (Gould et al. 2008). It is possible 

that homeowners may be more open to using natural versus synthetic acaracides in a residential 

capacity. Such acaracides include nootkatone, pyrethrin, carvacrol, garlic oil, and other plant oils 

like rosemary, peppermint, and spearmint (Eisen and Dolan 2016). Unfortunately, unlike 

synthetic acaricides, natural acaracides may not be effective for long periods because of their 

nonpersistent nature. Specifically, they readily break down in the environment following 

exposure to light and oxygen (Allan and Patrician 1995). The lower environmental persistence of 

natural acaracides may be favored in a residential setting, as this would reduce the chance of 

mammalian toxicity for pets and acute pesticide poisoning in humans (Quadros et al. 2020). 

However, higher concentrations of natural acaricides are often used to assist with longevity. For 

example, the low-pressure spraying of nootkatone, an essential oil extract from the heartwood of 

cedar, reported an 82-84% reduction after weeks 1 and 2, but dropped to 40-61% by weeks 4 and 

5 (Dolan et al. 2009). However, the application of a high-pressure spraying of nootkatone was 

very effective at reducing I. scapularis nymphs by at least 98% for up to 6 weeks after spraying. 

However, these promising findings were contradicted in a subsequent study where a single high-

pressure spraying of nootkatone yielded 0% reduction in nymphal ticks after the third week post-

treatment, following an initial 100% reduction success in the first week (Bharadwaj et al. 2012).  

Like inconsistencies in effectiveness observed in different studies using synthetic acaricides, 

these inconsistencies are likely explained by variable weather conditions and further research 

into the impact of weather on the efficiency of natural acaracides for I. scapularis nymph control 

is needed.  

Lastly, entomopathogenic fungal biological control, or fungal acaracides, have gained 

interest in more recent years as fungal acaricides have not been shown to have adverse effects on 
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other beneficial arthropod species such as honeybees (Ginsberg et al. 2017, Zimmermann 2007a, 

2007b). However, like other habitat-targeted acaricides, the application and success of fungal 

acaricides depends on multiple conditions including environmental factors, how a treatment is 

applied, and its concentration. For example, Stafford and Allan (2010) simultaneously tested 

Beauveria bassiana (Bals. -Criv.; Hypocreales: Clavicipitaceae) strains ATCC 74040 and GHA 

and pyrethroid bifenthrin, a synthetic acaracide, in a residential setting and both yielded similar 

reductions in questing I. scapularis nymphs. Specifically, the B. bassiana strains ATCC 74040 

and GHA yielded 83% and 74% respectively, and the pyrethroid bifenthrin yielded an 86% 

reduction of questing I. scapularis nymphs 4 weeks after treatment. In that same study, however, 

Stafford and Allan (2010) tested both B. bassiana strains the following year and only achieved 

38% and 55% reductions, respectively. This difference was thought to be the result of the 

variable mode of application (the original application was a high-pressure spraying whereas the 

second year was a low-pressure spraying) and/or due to the mild and wet environmental 

conditions the second year which are more favorable to tick survival.  

The discovery of white-footed mice as a principal reservoir of B. burgdorferi, in conjunction 

with the desire to decrease the adverse environmental effects of habitat-wide broadcast acaricide 

spraying, lead to the development of rodent-targeted acaricides in the late 80’s (Levine et al. 

1985, Donahue et al. 1987, Mather et al. 1989). It was hypothesized that because white-footed 

mice are the primary reservoir of B. burgdorferi, that targeting white-footed mice could not only 

reduce I. scapularis ticks, but also reduce pathogen prevalence in the I. scapularis tick 

population (White and Gaff 2017). Since then, two primary approaches for rodent-targeted 

treatments have been explored: bait boxes and tick tubes. Bait boxes contain bait that sometimes 

contains doxycycline (to clear any infections with tick-borne pathogens). The box has two entry 
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points and hanging over each entrance is a fipronil or permethrin-treated wick. Thus, the rodent 

brushes up against the acaracide-treated wick, therefore killing any attached ticks and ticks that 

may attach in the future for up to 4 weeks (Dolan et al. 2017). Alternatively, tick tubes are 

cardboard tubes containing permethrin-treated cotton. Mice will self-treat with acaricide by 

harvesting the cotton to be used as nesting material and consequently kill any immature ticks on 

the mice (White and Gaff 2017).  

Field studies using bait boxes alone reported a reduction around 77% for questing adult 

blacklegged ticks and 68% in questing nymphal tick abundance one year post treatment (Dolan 

et al. 2004, 2017). Another field study showed effectiveness against larval blacklegged tick 

abundance (Schulze and Jordan 2006). Specifically, they reported a reduction of larval and 

nymphal tick burdens on small mammals by 77% and 76%, respectively, while also reducing the 

B. burgdorferi infection prevalence in questing I. scapularis nymphs by 93% and reducing the 

percentage of infected small mammals in the intervention areas by 96% after 17 weeks of bait 

box deployment. Though field application results are promising, bait boxes can potentially 

increase rodent survival and reproduction by readily providing food via the bait being provided 

(White and Gaff 2017). Ultimately, the increase in rodent food sources could cause an increase 

in rodent populations. Thus, an increase in the rodent population could offset any reduction in 

tick population abundance in subsequent years as a larger rodent population provides more 

opportunities for ticks to feed on competent reservoirs, ultimately bolstering tick abundance and 

pathogen prevalence (Boutin 1990).  

Therefore, it has been proposed that tick tubes may be a preferred approach to rodent-

targeted acaricides since they do not provide bait. However, the effectiveness of tick tubes 

remains unclear. Some studies found no significant decrease in blacklegged ticks even after 2 
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(Daniels et al. 1991) or 3 years (Stafford 1991a, 1992) of control treatment. Contrastingly, when 

used seasonally, other studies found that tick tubes reduced tick infestation on rodents to nearly 

zero for the duration of two seasons (Mather et al. 1988, Deblinger and Rimmer 1991). Mather et 

al. (1988), following 1-year of treatment, reported an 89% reduction in host-seeking nymphs, a 

97% reduction in infected host-seeking nymphs, and a 72% percent reduction in prevalence of B. 

burgdorferi in white-footed mice. Though Mather et al. (1998) reported percent reduction in 

infected questing nymphs and prevalence of B. burgdorferi, several studies have reported 

increases 1-3 years post treatment after the use of tick tubes in both residential (Stafford 1991b, 

1992, Daniels et al. 1991) and woodland settings (Deblinger and Rimmer 1991). 

While white-footed mice are important hosts of immature stages of blacklegged ticks, white-

tailed deer are a principal host for adult blacklegged ticks and therefore an important 

reproductive host (Rand et al. 2003). However, unlike white-footed mice, white-tailed deer are 

incompetent hosts of B. burgdorferi. Despite white-tailed deer being poor Lyme disease 

reservoirs, some studies have found that white-tailed deer are an important amplifier for I. 

scapularis populations (Piesman et al. 1979, Spielman et al. 1994). These findings lead to the 

hypothesis that tick abundance could be suppressed when deer were culled or excluded from an 

area (Spielman 1988, Wilson et al. 1988). To examine this, Deblinger et al. (1993) reduced deer 

to <25 deer / km2 and yielded 78%, 35%, and 41% reductions in infestation of rodents by 

nymphs after 2 years, 3 years, and 4 years, respectively, following deer removal. Another study 

yielded 100% reduction in infestation of rodents by nymphs after 3 years and 4 years following 

deer removal (Rand et al. 2004).  

Because of the logistical constraints associated with deer exclusion and the ecological and 

ethical concerns associated with culling a large proportion of a deer population, the 4-poster 
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device was developed as an alternative deer-targeted approach to blacklegged tick control. The 

4-poster device dispenses bait adjacent to topical acaricide-soaked rollers which deer brush up 

against as they eat the bait, thus applying the acaricide to the deer’s head, neck, and ears (Pound 

et al. 2000).  This method is particularly effective given that the acaracide treats the area of the 

deer where ticks primarily attach, e.g., the head, neck, and ears (Sonenshine et al. 1996). In 

addition to killing ticks on contact, the acaricide will continue to protect those treated areas on 

the deer for a month after initial application. The applied acaracide is usually 2% amitraz with 

devices being distributed at a density of 1 per 20-25 ha. Studies on 4-poster devices have 

reported an increase in I. scapularis nymph suppression with each subsequent year that the 

devices are deployed (Brei et al. 2009, Daniels et al. 2009, Stafford et al. 2009, Schulze et al. 

2009). For example, most studies reported that reduction in questing nymphs ranged between 55-

64% for years 4 and 5 of device deployment in residential and woodland settings (Daniels et al. 

2009, Stafford et al. 2009, Schulze et al. 2009). These same studies went on to document the 

most reduction in questing nymphs 6 years after treatment, with suppression ranging from 70-

80%.  

However, despite showing some effectiveness with long-term use, the 4-poster control 

method is not without its drawbacks. Like bait boxes, 4-posters potentially increase the cervid 

population by providing bait and decreasing competition (Eisen and Dolan 2016). This may 

adversely affect tick populations by providing a larger number of available hosts and essentially 

offset any population reduction that may result from using 4-poster devices. Additionally, the use 

of 4-posters leads to topsoil disruption and ground cover damage in the area surrounding the 

device due to high deer traffic (White and Gaff 2017). Furthermore, such devices can also help 

facilitate pathogen transmission of infectious diseases like chronic wasting disease (CWD) and 



 
 

 10 

tuberculosis (Wong et al. 2017). There are also several logistical constraints that can impact the 

effectiveness of these devices: variable homeowner acceptance of residential use leading to 

patchy deployment, the inability to place devices in an optimal time or location due to regulatory 

issues, interference by non-target mammals e.g., squirrels and raccoons, the availability of 

alternative food sources, a light and therefore less effective application of acaracides on treated 

deer, and availability of untreated deer as tick hosts (Carroll et al. 2008, 2009a; Miller et al. 

2009; Stafford et al. 2009). 

One overarching concern with all the acaracide-based tick control methods (e.g., habitat-wide 

spraying and host-targeted acaricides) is the development of acaracide resistance. One study 

found that by applying a chemical acaracide more than 6 times in a year, the treatment selects for 

resistant individuals by killing all ticks that were once susceptible (Rodrígues-Vivas et al. 

2006a). Though I. scapularis has yet to show signs of acaracide resistance, elsewhere in the 

world, other tick species have developed resistance to acaricides. For example, Boophilus 

microplus, the cattle tick, was reported to have developed resistance to organophosphates, 

synthetic pyrethroids, amitraz (formamidines) and ivermectin in Mexico (Fernandez-Sala et al. 

2012). Another study has reported similar acquired resistance of B. microplus in India (Vatsya 

and Yadav 2011) and cited a major concern as the passing of the acquired resistance from parent 

to offspring. 

One promising alternative approach to tick control that does not involve acaricides is 

prescribed burning. Prescribed burns are normally used to enhance wildlife habitat and the 

ecosystem health of fire-adapted ecosystems, control invasive species, and/or to reduce the risk 

of wildfires. In the 80’s and 90’s, prescribed fires began to be studied as potential tools for tick 

control. However, most studies focused on Amblyomma americanum Linnaeus, the lone star tick, 
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as it is the most common tick in the southeastern United States. Studies examining burning in 

relation to I. scapularis tick control are comparatively sparse. Of the studies that have been 

conducted, results have been mixed. For example, Mather et al. (1993) reported only a 49% 

suppression of I. scapularis nymphs after a light to moderate intensity burn on Shelter Island, 

NY. However, most studies have found notable reductions in tick populations post-fire. For 

example, Stafford et al. (1998) tested two intensities of burning: light to moderate and moderate 

to severe. They reported 74% and 97% suppression of I. scapularis nymphs two weeks after a 

single burn, concluding that a more intense burn was more effective. Comparatively, Wilson 

(1986) reported 71%, 76.9%, and 82.8% suppression of I. scapularis adults 2 weeks, 11.5 

months, and 12 months after an April burn. He also reported 88.3% suppression in I. scapularis 

adults 4 months after a November burn. However, like what had been reported in previous 

studies with lone star ticks (Barnard 1986, Davidson et al. 1994), these early studies generally 

found that blacklegged tick abundance was reduced after a burn, but usually returned to pre-burn 

levels or higher within one to two years (Wilson 1986, Mather et al. 1993, Stafford et al. 1998).  

Notably, these early studies had some key flaws which may have prevented a complete 

understanding of the impacts of prescribed fire on tick populations. Some of these issues 

included small burn areas (Mather et al. 1993), using sites that had never been burned before 

(Wilson 1986), and/or only performing a single burn (Stafford et al.1988). This contrasts with 

the way in which prescribed fire is typically utilized. Specifically, prescribed burning is 

consistently done every 2-5 years and usually over large acreage, e.g., anywhere from 25 to 

several hundred acres. More recent studies have examined areas in which long-term prescribed 

fire had been used for longer periods of time and found more promising results. For example, 

Gleim et al. (2014) reported 78% suppression of I. scapularis adults at sites in Georgia where 
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burning had occurred for at least 10 years. Notably, these reductions were sustained for the 

entirety of the two-year study. Similarly, Hodo et al. (2020) reported 82% suppression in I. 

scapularis adults 12 months after burning. Again, the location where this study was conducted in 

east Texas had a history of prescribed burns which had occurred every 1-2 years since 1993. 

These more recent studies have indicated that long-term burning may be an effective treatment 

for controlling I. scapularis populations.  

Thus, despite being studied for decades, the outcomes of studies examining one or more tick 

control method are often inconsistent. These inconsistencies are likely due to multiple factors 

including the tick species, tick abundance, phenology, climate, weather, and host dynamics 

amongst other factors (White and Gaff, 2017). These findings have underscored the challenge of 

identifying a single, universally effective control method and indicates that approaches may need 

to be customized to the specific regions, ecosystems, and/or weather conditions from year-to-

year. However, large scale, long-term, comprehensive field studies examining either single or 

integrated management` strategies are logistically challenging and costly. Thus, the use of a 

validated simulation model may be a cost-effective yet accurate tool for predicting the 

epidemiological outcomes of various intervention methods based on these many factors.  

Several models seeking to predict the population dynamics of I. scapularis ticks and 

transmission of B. burgdorferi within the population have been made over the years. Ginsberg 

employed a discrete-time model predicting infection rate at each tick life stage (1988), while 

Porco (1991) constructed a mathematical model to evaluate rate of infection dynamics of B. 

burgdorferi in I. scapularis ticks specific to the eastern United States. Additionally, Sandberg et 

al. (1992) employed a modified Leslie matrix methodology to build a model specific to 

predicting the dynamics of I. scapularis populations on Nantucket Island, Massachusetts. All 
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three models offered valuable insight to understanding the population dynamics of I. scapularis 

and B. burgdorferi infection, however, no single model included density-dependent variables or 

biological and environmental variables such as weather. 

The first model developed that incorporated density-dependent variables, biological, and 

environmental variables in the context of I. scapularis ticks was LYMESIM (Mount et al. 

1997a), a field-validated, mechanistic model originally developed in the 1990’s. The original 

LYMESIM model (Mount et al. 1997a) was built based on previously published tick life history 

models including: Amblyomma americanum (L.) lone star tick (Haile and Mount 1987, Mount et 

al. 1993), Dermacentor variabilis (Say) American dog tick (Cooksey et al. 1990), and 

Rhipicephalus (Boophilus) microplus (Canestrini) and Rhipicephalus annulatus (Say) cattle ticks 

(Mount et al. 1991). Specifically, LYMESIM simulates the life-history dynamics of I. scapularis 

ticks and enzootic transmission of B. burgdorferi within an ecosystem (Mount et al. 1997a, 

(Figure 1). The objective use of the model initially was to understand the effects of differing host 

densities on tick abundance and pathogen dynamics (Mount et al. 1997a). Later, it was also used 

to simulate and predict the outcomes of various tick control strategies to determine their 

effectiveness at reducing questing ticks and ticks on hosts (Mount et al. 1997b).  

The model includes 5 major model structures (Figure 1): (1) temperature-dependent 

development for each tick life stage, (2) temperature-dependent fecundity rates for female adults 

when engorged, (3) survival rate of ticks off-host based on temperature, habitat, precipitation, 

and saturation, (4) host-finding rates for each tick life stage, and (5) density-dependent survival 

rates for each life stage of ticks by hosts (Mount et al. 1997a). The categories of hosts included 

1) white-footed mice, 2) white-tailed deer, 3) medium-sized mammals, 4) reptiles, 5) small 

mammals and birds, and 6) other large mammals (i.e., domestic livestock). Though field 
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validated, LYMESIM has since become outdated, and no longer functional on modern 

computing software as it was originally built on Microsoft BASIC version 7.1 (Mount et al. 

1991). Furthermore, advances in the understanding of Lyme ecology since the 1990’s indicated a 

need for the model to be updated to improve accuracy. Thus, in 2020, the model was updated as 

LYMESIM 2.0 (Gaff et al. 2020) and transferred to R statistical software (R Development Core 

Team 2008).  

The updated LYMESIM 2.0 model now includes statements limiting the number of ticks 

allowed to simultaneously feed on a host (Gaff et al. 2020). Prior to this update, the original 

model allowed thousands of ticks on a single organism.  Additionally, the original model did not 

account for variable day length, which would change depending on geographic location and time 

of year. Another important update involved the distinction that B. burgdorferi is only passed 

transstadially within I. scapularis (Scoles et al. 2001). Previous research evaluating Borrelia 

infection in larvae most likely failed to distinguish B. burgdorferi from B. miyamotoi, the latter 

which is passed transovarially (i.e., adult to offspring). So, this subsequent model iteration set the 

transovarial transmission of B. burgdorferi to zero. As for hosts, all previous categories were 

included except large mammals were replaced by insectivores and other B. burgdorferi reservoir 

competent hosts including shrews (Figure 1).  

Finally, LYMESIM 2.0 updated the survival function of host-seeking ticks. Simplified 

mathematics were used to modify the assumptions about the physical cost of questing. This 

allows for a more realistic phenology curve representative of various regions across the United 

States. Lastly, the updated model now includes outcomes such as density of host-seeking I. 

scapularis nymphs (DON) and density of B. burgdorferi-infected I. scapularis nymphs (DIN). 
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These values are commonly reported by field studies as measures of success of tick control 

treatments (Eisen and Dolan 2016, Gaff et al. 2020).  

As with the original model, LYMESIM 2.0 was also field validated, this time using weather 

data from 2007-2016 and flagging data including reported densities of questing I. scapularis 

nymphs and densities of mice at three locations: Cary, New York; Itasca, Minnesota; and 

Norfolk, Virginia (Gaff et al. 2020). The model was run using weather data respective to each 

site taken from the National Oceanic and Atmospheric Association’s Comparative Climate Data 

Center and North American Land Data Assimilation System (NLDAS). The latter data source 

was specifically chosen as it provides a continuous spatiotemporal record of meteorological 

conditions over the United States. These values were used in tandem with host dynamics to 

estimate DON and DIN values for the three sites. To evaluate biological realism, the model’s 

predictions were compared to the field data to identify whether the timing and abundance of 

peaks at each life stage were similar. By comparing the predicted DON and DIN for all three 

sites to the field data, the model was found to be consistent with the field reported observations.  

      Given that LYMESIM 2.0 has been validated using field data, the objectives of the current 

study were to use LYMESIM 2.0 to provide updated predictions regarding the effectiveness of 

acaracide spraying, bait boxes, and 4-poster devices when used both singularly and in 

combination to control I. scapularis populations and reduce the densities of B. burgdorferi-

infected nymphs in the northeast, upper Midwest, and Mid-Atlantic regions of the U.S. 

Additionally the model was used to determine the most effective ways to apply tick control 

treatments (e.g. evaluating the best time of year for application, optimal duration and frequency 

of treatment, and what percentage of an area/host population must be treated). Additionally, pilot 

work was done to incorporate prescribed burning as a possible treatment option within the 
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model. It was hypothesized that the most effective treatment would be using an integrated 

approach (e.g., using multiple types of treatments together) annually when I. scapularis nymphs 

are active. Furthermore, it was predicted that prescribed burning would be as effective if not 

more effective than the treatment methods being tested. 

METHODOLOGY: 

General Model Overview: 

LYMESIM 2.0, a mechanistic model, was used to evaluate the effectiveness of various I. 

scapularis tick control methods to identify optimized tick control strategies. The streamlined 

equations for each of the following model structures: life cycle, weather inputs, temperature-

dependent development and fecundity rates, survival rates off-host, activity-dependent maximum 

survival, host-finding rates, density-dependent survival on hosts, and infection dynamics can be 

found in Gaff et al. (2020). Additionally, several assumptions about the model were previously 

covered in Mount et al. (2017b) and Gaff et al. (2020), but briefly: (1) all three life stages may 

survive up to 80 weeks, but is reduced 3 weeks for every week spent questing; (2) white-footed 

mice, shrews, small mammals, birds, and medium sized mammals can be infected; (3) reptiles 

and white-tailed deer are poor reservoirs and thus cannot infect ticks but act as blood meals; (4) 

all infected ticks are equally likely to transmit the infection, while infected hosts of the same 

species are all equally likely to infect a tick; (5) once a host is infected, it remains infected; and 

(6) survival and reproduction rates are the same for infected and uninfected ticks and hosts. 

The model used meteorological data from the years 2007-2016 from three different 

locations: Itasca, Minnesota; Cary, New York; and Norfolk, Virginia. The model output 

measures evaluated in this study were the number of questing blacklegged nymphs per hectare 

(DON) and number of questing B. burgdorferi-infected blacklegged nymphs (DIN) per hectare 
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(which accounts for both changes in DON and infection prevalence) (Gaff et al. 2020).  To 

compare the derived output values from comparable iterations of the model, the maximum DON 

(hereon, DON) and average DIN (hereon, DIN) per year were taken for every treatment year and 

the first two years post-treatment. To evaluate the effectiveness of any treatment, the percent 

reduction of DON and DIN, hereon suppression, was calculated as follows:  

[1 - (treatment DON or DIN / control DON or DIN)] x 100 

Treatments were deemed effective if DON suppression was at least 80% for every year 

treatment was applied and did not exceed DON or DIN values at control sites in the years 

following treatment.   

Efficiency & Optimization of Spraying, Bait Boxes, and 4-Poster Devices 

The effectiveness of three commonly used tick control treatment methods were evaluated. 

Specifically, the three treatment methods examined were: habitat-targeted acaricide (spraying), 

rodent-targeted acaricide (bait boxes), and white-tailed deer-targeted acaricide (4-poster). Initial 

simulations were run evaluating the effectiveness of each treatment as well as all combinations 

of the three treatment methods. These simulations were run given an efficiency of 25% and two 

years of control starting in 2007. Here, efficiency refers to the percent of an area covered via 

spraying and the percent of the host population that is receiving topical acaracide from a host-

targeted treatment, e.g., bait boxes and 4-posters. In the model, host-targeted treatments, were 

deployed year-round during treatment years, while spraying was applied once and assumed 

effective for 4 weeks which is conservatively the minimum duration that spraying is known to be 

effective (Eisen and Dolan 2016). To account for potential differences in effectiveness of 

spraying depending on the time of year it was applied, the model was programmed such that it 
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would test the outcome of spraying every possible week of the year and then provide the lowest 

DON and DIN across all iterations.  

 Once the most effective treatment was determined (combination of bait box + 4-poster + 

spraying), further work was done to identify optimized strategies for the frequency and duration 

of treatment. Assuming 25% efficiency, the model was run for 10 years applying the treatment 

for a variable number of years including no treatment (control) and then treatment for 1 year, 2 

consecutive years, 8 consecutive years, and alternating application every odd year for 3 and 5 

years. Next, the most effective treatment (combination of bait box + 4-poster + spraying) was 

modeled assuming two consecutive years of control at various levels of efficiency including 0% 

(control), 10%, 15%, 20%, 25%, and 30% to determine the minimum efficiency required to 

consistently attain 80% suppression. Then, to evaluate that the model simulations were consistent 

regardless of what year treatment was started, e.g., regardless of weather, the most effective 

treatment (bait box + 4-poster + spraying combination) was simulated varying the starting year 

of treatment between 2007-2013. The treatment was applied for 2 consecutive years of control at 

25% efficiency.  

The treatment that was deemed most effective (bait box + 4-poster + spraying 

combination) was further explored to determine what time of year a single application of 

spraying yielded the most effective results. To do this, simulations were run testing application 

every week of the year at each site to determine which weeks yielded DON suppression greater 

than 80% for at least 2 consecutive years. Treatment weeks that resulted in at least 80% DON 

suppression across all three sites were included in the recommended timeframe for the most 

effective method of treatment. Finally, because most pest control companies apply treatments 2-4 

times per year, (Jordan and Schulze 2020) scenarios were run to evaluate the effectiveness of the 
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4-poster + bait box + spraying combination when spraying was applied twice a year (as with 

previous runs, bait boxes + 4-posters were out year-round) for a total of two years at 25% 

efficiency. Specifically, 1) the time of year in which treatments are most commonly applied by 

pest companies was examined (late May, weeks 17-21, and early June, weeks 24-28; Jordan 

personal communication), and 2) Because the time frames commonly used by pest control 

companies for dual application were not within the previously identified ideal time windows for 

singular treatment, alternative dual treatment timings were modeled to attempt to find the most 

effective times of year to apply twice annual treatments. Specifically, the alternative dual 

treatment time windows proposed were: (1) late March, weeks 9-13, and early June, weeks 24-

28, applied annually and (2) every other year, and (3) late March, weeks 9-13, and late 

November, weeks 43-47.  

The reasoning behind alternative treatment options 1 and 2 is to apply the first treatment 

earlier in the year which is the time frame that the model predicted to be the most effective, 

while keeping the second treatment the same as what is commonly employed by pest control 

companies. By keeping the second treatment within the time window currently used by pest 

control companies (e.g., when I. scapularis nymphs are most active), consumers and pest control 

companies may be more open to the recommended change based on perceived effectiveness 

during that time of year. Alternative treatment option 3 reflects the two-time windows that the 

model predicted to be the most effective based on ideal time windows for singular treatments. 

Lastly, these dual treatments were also compared to a single application of the 4-poster + bait 

box + spraying combination treatment for two consecutive years at 25% efficiency, to determine 

whether the second application of treatment was truly necessary for reducing DON and DIN.  
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For certain comparisons, i.e., when comparing all treatment options and combinations 

and when comparing duration and frequency of treatment, heat maps were used to illustrate the 

effectiveness of the various treatments/scenarios being tested. To make these, the DON and DIN 

suppression values, respectively were grouped, e.g., “binned”, into the following categories: 1 = 

x < 0%, 2 = 0% < x < 15%, 3 = 15% < x < 50%, 4 = 50% < x < 80% and 5 = 80% < x < 100%. 

The reasoning behind these bin categories was as follows: category 1 includes any treatment that 

exceeded the control indicating an increase in DON or DIN potentially because of the treatment. 

Category 2 included treatments that had no to minimal effectiveness. Category 3 included 

treatments that showed some effectiveness but still far from the 80% threshold. Category 4 

included treatments that achieved notable suppression but were less than the 80% threshold goal, 

and lastly, category 5 included all treatments that achieved the target of 80% suppression or 

greater. 

Pilot Work to Adapt LYMESIM 2.0 to Evaluate the Effectiveness of Prescribed Fire 

 Lastly, pilot work was done to adapt LYMESIM 2.0 to evaluate the effectiveness of 

prescribed burning. To begin to build an accurate predictive model, a literature review was 

conducted to analyze the reported effectiveness of prescribed burning at reducing I. scapularis 

tick populations (Table 1). As most literature reported at least a 71% reduction of I. scapularis, 

the model was set to assume that all I. scapularis would be reduced by 70% after a burn. 

Additionally, because prescribed fire is known to impact host dynamics, work was done 

to account for the impacts of prescribed fire on host dynamics, including white-footed mice 

(Greenberg et al. 2006), white-tailed deer (Meek et al. 2008), medium-sized mammals, reptiles 

(Perry et al. 2012), and small mammals and birds (Adams et al. 2013). To parameterize the 

model as it related to white-footed mice and small mammal responses to fire, a 15-year, 
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unpublished, mark-recapture data set (Conner, personal communication) on cotton rats 

(Sigmodon hispidus) and cotton mice (Peromyscus gossypinus) was used. This data set came 

from eight sites in southwestern Georgia which were trapped quarterly and burned every other 

year for the duration of the data set. This was supplemented with two years of telemetry data 

from cotton rats (n = 70) which were tracked after fires at those same sites. Importantly, it was 

assumed that cotton mice would respond to fire in the same way that white-footed mice would 

and collectively that this represented how most small mammal populations would respond to fire.  

Table 1. Prescribed burning literature that reported suppression of various life stages of I. 
scapularis ticks in a woodland setting.  

Author & Year Ixodes scapularis 
Life Stage 

Fire Intensity % Reduction at Time 
Post- Treatment 

Wilson 1986 Adult 

Moderate to severe 76.9% after 11.5 months 
Moderate to severe 82.8% after 12 months 
Moderate to severe 88.3% after 4 months 
Moderate to severe 86.7% after 7 months 
Moderate to severe 71% after 0.5 months 

Stafford et al. 1998 Nymphs Moderate to severe 97% after 0.5 months 
Low to moderate 74% after 0.5 months 

Mather et al. 1993 Nymphs Low to moderate 49% after 2 months 
Gleim 2014 Nymphs Low to moderate 78% after 12 months 

Hodo et al. 2020 Nymphs  Moderate to severe 82% after 12 months 
 

For this initial pilot work, parameters for other host groups being considered, i.e., birds, 

reptiles, white-tailed deer, and medium-sized mammals, were developed based off the expert 

knowledge of a wildlife scientist that has studied the impacts of fire on wildlife for over twenty 

years (Conner, personal communication). Through this work, the model was coded such that the 

populations of white-footed mice, small mammals, birds, reptiles, and shrews would all be 

reduced by 95% for two months post-fire. Additionally, white-tailed deer and medium-sized 

mammals would see no change in abundance post-burning. Also, the model was updated to 

include a switch for a prescribed burn called “fire” and additional variables “fire_control”, 
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“fire_begin” and “fire_end” were added to define what weeks the prescribed burn was completed 

and impacting tick populations.  

The updated model was run applying the prescribed burning in years 1 and 3 (e.g., 2007 

and 2009) at 5% efficiency and assumed treatment was effective for 8 weeks. Here, efficiency 

refers to how much of an area is burned. A low efficiency value was chosen to represent the 

small proportion of area that would safely be allowed to burn in a residential setting. The 

application of prescribed burning was chosen to be every other year, as this is commonplace for 

forest management (Williams et al. 2012). The assumption that the treatment would be effective 

for 8 weeks is a conservative estimate, as studies have shown effective suppression of DON after 

treatment for at least 2 months (Wilson 1986, Gleim et al. 2014, Hodo et al. 2020). The model 

predicted DON and DIN given the application of the treatment in the first week of the first year 

only. This was compared to the DON and DIN values reported for the first week of applied 

treatment for the previously tested acaracide treatments which were applied for two consecutive 

years (2007 and 2008) at 25% efficiency.  The preliminary model’s predicted DON and DIN 

suppression was calculated for a total of 5 years (2007 – 2011).  

RESULTS: 

Comparing Spraying, Bait Boxes, and 4-Poster Devices 

The combination of all three treatments (4-poster, bait boxes, and spraying) was found to 

be the most effective at decreasing DON at all locations with suppression values ranging across 

all sites (Norfolk, VA; Itasca, MN; and Cary, NY) from 84-89% during the first year of 

treatment and 91-100% during the second year of treatment (Figure 2). Additionally, suppression 

remained greater than the desired 80% suppression threshold during the first-year post-treatment, 

with suppression ranging between 84-91% across sites before returning to the pre-treatment 
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levels two years post-treatment. Though the combination of all three treatments was found to be 

the best at suppressing DON, it was only marginally more effective than spraying alone, spraying 

+ bait boxes, and spraying + 4-posters. In short, all treatments that involved spraying were found 

to effectively suppress DON by more than 80% for the two years of treatment and the first-year 

post-treatment before returning to pre-treatment levels two years post-treatment (Figure 3).  

However, no singular treatment or combination of treatments was found to achieve 80% 

reduction in DIN (Figure 2). Nevertheless, the combination of all three treatment methods 

reduced DIN the most across all sites. Notably, all three sites showed the greatest DIN 

suppression in the second year of treatment. Specifically, given the application of all three 

treatment methods (spraying + bait box + 4-poster), all three sites reported DIN values ranging 

from 30-32% during the first year of treatment, 73-79% during the second year of treatment, and 

46-75% during the first-year post-treatment, indicating high variation in percent DIN suppression 

in the first-year post-treatment. In the second-year post-treatment, DIN suppression was reported 

to return to pre-treatment levels at Itasca, MN. While the DIN suppression values were reported 

as negative for each treatment at Cary, NY and Norfolk, VA, except for treatments of bait boxes 

alone, 4-posters alone, and bait boxes + 4-posters in combination at the Cary, NY location. 

Notably, negative DIN values meant that DIN exceeded that of the control treatment in the 

second-year post-treatment. 

Across all three sites, the treatments of bait boxes alone, bait boxes + 4-posters, spraying 

+ bait boxes, and spraying + bait boxes + 4-posters saw a minimal decrease in prevalence of B. 

burgdorferi in the first-year post-treatment. For example, the reported prevalence for the control 

ranged between 40.3-43.5%, across all sites whereas, the treatment bait boxes + spraying (the 

treatment reporting the greatest decrease in prevalence) had reported prevalence ranging between 
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38.5-42.7%, 36.9-41.9%, and 39.4-42.4% for the sites Cary, NY; Itasca, MN; and Norfolk, VA, 

respectively.  

The Best Time of Year to Apply Control Methods 

The best time of year to apply the combination of all three treatments (spraying + bait boxes + 4-

poster) was found to be between weeks 1-16, e.g., January through mid-April, and 38-48, e.g., 

mid-September to December (Figure 4). When applied between weeks 1-16, DON suppression 

ranged between 84-91% during the two years in which treatment was applied. The effectiveness 

of DON suppression drops 1-year post-treatment, however, with effectiveness being less than 

25%. Conversely, when applied between weeks 38-48, DON suppression ranges between 83-

92% in the second year of control and first-year post control, i.e., 2008 and 2009. However, 

DON suppression does not exceed 3% for the first year of treatment, as treatment is applied late 

into the first treatment year. The initial application of treatment between the weeks 20-37, e.g., 

mid-April through mid-September should be avoided as no treatment or post-treatment DON 

suppression was achieved. Specifically, the reported DON suppression when applied during this 

time period in the first year of treatment is 0%, and then ranges from 13-74%, 23-76%, and -7–

3% in the second year of treatment, first-year post treatment, and second year post treatment 

respectively. 

Most Efficient Duration and Frequency of Treatment 

 The model was used to evaluate the effectiveness of varying treatment lengths (one year, 

two consecutive years, eight consecutive years, and every other year for three and five years). In 

treatment years, because it was shown to be the most effective, the combination of 4-poster + 

bait box + spraying was applied at 25% efficiency. The model determined that long-term 

treatment for eight consecutive years was shown to be most effective at reducing DON and DIN 



 
 

 25 

values across all three sites (Figures 5-6). Specifically, the applied combination treatment in 

consecutive years yielded DON suppression values ranging from 84-100% in every year of 

treatment and the first-year post treatment, before returning to pre-control values in the second-

year post treatment. Also, treatment applied every other year for 3 years and 5 years mostly 

achieved above 80% suppression of DON, ranging from 77-93% suppression in treatment years 

and first-year post treatment (Figure 5). The first interim year (2008), where no control was 

applied, at Itasca, MN was the only observation that reported suppression less than 80%, with a 

77% suppression.  

 Importantly, the only approach found to achieve and sustain fairly high DIN suppression 

across all sites was when treatments were applied every year for eight years. Generally, DIN 

suppression was fairly low and equal across all sites (30-31% suppression) during the first year 

of control. However, following the second year (2008) DIN suppression was found to range 

between 60-77% at Cary, NY, 79-99% at Itasca, MN, and 79-91% at Norfolk, VA across all 

treatments tested (Figure 5). From 2009 through 2014, the category in which treatments were 

applied every year for eight years (e.g., through 2014) had notably higher DIN suppression than 

all other categories including those receiving treatments every other year for three and five years, 

respectively. Specifically, when treatments were applied for eight consecutive years, Itasca and 

Norfolk achieved 80% DIN suppression across all years from 2008 through 2014 except for 

Norfolk in 2013; whereas, DIN suppression ranged from 60-77% in Cary, NY(Figure 5).   

Minimum Required Efficiency 

The model was used to determine the minimum efficiency required to reach 80% DON 

suppression. Again, efficiency refers to the percentage of an area that would be sprayed and the 

percentage of a host population that would be treated with a host-targeted acaracide treatment. 
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Ultimately, a minimum effectiveness of 25% was required to achieve 80% DON suppression at 

all three locations by the first year of treatment, second year of treatment, and first year post-

treatment (Figure 7). However, 20% efficiency was also found to achieve 80% suppression in the 

second year of treatment and first year post-treatment; just not in the first year of treatment.  

Impacts of Weather on Treatment Outcome 

To determine whether weather had any impact on treatment outcome (e.g., whether 

treatment outcomes might vary depending on the year), simulations were run given the 

application of the 4-poster + bait box + spraying combination starting on varying calendar years 

for two consecutive years at 25% efficiency. Again, varying start year would allow us to test 

whether natural weather fluctuations seen year to year would impact the effectiveness of the 

treatments. In treatment years, DON is fairly consistent across all three sites with some 

variability (Figure 8). Specifically, at Cary, NY the DON suppression values range from 84-92% 

for all treatment years except for when treatments were started in 2010 which only yielded 78% 

DON suppression. At Itasca, MN the DON suppression values ranged from 82-100% excluding 

when treatments were started in 2008 and 2009, which resulted in 74% and 75% DON 

suppressions respectively. At Norfolk, VA the DON suppression values ranged from 81-93%, 

across all years. 

However, DON suppression is quite variable in the first-year post treatment across all 

three sites. While the 80% threshold continued to be met in the first-year post treatment for most 

instances, at all three locations, this was not the case when treatments were begun in 2008 and 

2009, respectively. In the first-year post treatment, the range of DON suppression values across 

all sites ranged from 1-61% and 1-20% when treatment started in 2008 and 2009, respectively 

(Figure 8).  
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As for DIN suppression, all values ranged between 28%-32% suppression in the first year 

of treatment except for Itasca, MN in 2011 (53%) and 2012 (50%). DIN suppression values 

increased and became more variable following the second year of treatment with values ranging 

from 39 – 100% across all locations and any given year, with some exceeding the 80% 

suppression threshold (e.g., Itasca 2007, 2010, 2011, 2012 and 2013; Norfolk 2010 and 2012). 

DIN suppression was variable in post-treatment years ranging between -4–85% in the first-year 

post treatment and -8–58% across all three sites. The Itasca, MN site reported > 80% DON 

suppression in years 2012 and 2013 in the first-year post treatment. Notably, all treatments in the 

second-year post-treatment for Cary, NY and Norfolk, VA reported DIN suppression < 2%. 

Optimizing Timing and Number of Treatments per Year 

The most commonly employed time frame of treatment by pest control companies is late 

May and early June. This dual application was the least effective treatment, reporting effective 

DON suppression only in the second year of application. With similar suppression values 

reported across all sites, DON suppression ranged between 57-81%, 91-100%, 30-67%, and -6–

34% in the first year of treatment, second year of treatment, first year post-treatment, and second 

year post-treatment, respectively (Figure 9). Also, DIN suppression ranged between 17-32%, 61-

92%, 28-70%, and -8–33% in the first year of treatment, second year of treatment, first year post-

treatment, and second year post-treatment, respectively.  

When examining more effective time windows, the most effective dual treatment was 

found to be the annual application of treatment in late March and November. This timeframe 

yielded the highest DON suppression in both years of treatment and the first-year post treatment 

across all three sites. The reported DON suppression ranged between 84-89%, 98-100%, 89-

92%, and 0–88% in the first year of treatment, second year of treatment, first year post treatment, 
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and second year post treatment, respectively (Figure 9). Notably, the reported percent 

suppression for the second-year post-treatment was 0%, 86%, and 0% for Cary, NY;, Itasca, MN, 

and Norfolk, VA, respectively. For DIN suppression, the dual application in late March and 

November also reported the highest suppression values ranging between 85-89%, 98-100%, 90-

92%, and 0–87% in the first year of treatment, second year of treatment, first year post treatment, 

and second year post treatment, respectively. 

Interestingly, annual treatment in late March and November is only marginally more 

effective than treatments in late March and early June in alternating years. In fact, this was the 

only treatment that showed DON suppression in the second-year post treatment and showed 

effectiveness in nearly every year of treatment and non-treatment years. The reported DON 

suppression ranged between 84-89%, 89-95%, 87-90%, and 78–97% in the first year of 

treatment, second year of treatment, first year post treatment, and second year post treatment, 

respectively (Figure 9). The reported DIN suppression ranged between 85-89%, 89-95%, 87-

91%, and 79–97% in the first year of treatment, second year of treatment, first year post 

treatment, and second year post treatment, respectively. 

The dual treatment in late March and November is also only marginally better than a 

single application of treatment. For the single application of treatment, DON suppression is only 

effective for the two years of control and first-year post control. The reported DON suppression 

ranged between 84-89%, 89-95%, 89-92%, and 0–86% in the first year of treatment, second year 

of treatment, first year post treatment, and second year post treatment, respectively. A single 

application of the combination treatment reported DIN suppression ranging between 30-31%, 73-

79%, 46-75%, and -6–52% in the first year of treatment, second year of treatment, first year post 

treatment, and second year post treatment, respectively. 
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The last treatment tested, dual treatment in late March and early June, DON suppression 

ranged between 84-89%, 91-100%, 29-71%, and -4–48% in the first year of treatment, second 

year of treatment, first year post treatment, and second year post treatment, respectively. This 

dual treatment in late March and early June, also has similar DIN suppression as the single 

treatment ranged between 85-89%, 90-100%, 26-75%, and -6–50% in the first year of treatment, 

second year of treatment, first year post treatment, and second year post treatment, respectively. 

Incorporating Fire into the Model 

 Finally, pilot work was performed to incorporate prescribed burning into the model. 

Prescribed burning was applied at 5% efficiency, alternating application in years 2007 and 2009 

and assumed the treatment remained effective for 8 weeks. The prescribed burning treatment was 

compared to all other previous treatments and combinations which were applied at a 25% 

efficieny for 2 consecutive years of treatment (2007 and 2008). When comparing supression 

values, prescribed burning was found to be most effective at reducing DON. DON supression 

ranged from 96-98% in Cary, NY, 97-100% in Itasca, MN and 93-99% in Norfolk, VA in the 

first 4 years (Figure 10). Comparatively, in that same time frame, the combination of spraying + 

bait boxes + 4-posters, the second most effective control, reported DON supression ranging from 

3-92% in Cary, NY, 76-100% in Itasca, MN and 2-92% in Norfolk, VA for those same 4 years. 

 It is also notable that higher DIN supression following the application of prescribed 

burning was observed for Cary, NY and Itasca, MN. Specifically, DIN supression following 

precribed burning ranged from 96-98% in Cary, NY up until the first year post fire, prior to 

returning to 0% supression two-years post control. The DIN supression ranged from 96-100% in 

Itasca, MN for all years of fire and two years post fire. Notably, Itasca, MN was the only site to 

report effective DIN supression two years post burn. Also all other treatments at this site returned 
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to 0% supression by two years post burn. Meanwhile, in Norfolk, VA,  DIN supression ranged 

from 96-100% in the first three years (control years and interim year), but had poor supression 

post-treatment years ranging from -42 – 20%.  Comparatively, the combination of spraying + 

bait boxes + 4-posters, the second most effective control, reported DIN supression ranges from -

13-73% in Cary, NY, 0-79% in Itasca, MN and -6%-79% in Norfolk, VA in the first three years. 

Regardless of the treatment and site, the second burn year (i.e., year 3) reported the highest DIN 

supression. 

DISCUSSION: 

The purpose of the original LYMESIM model was to not only simulate the natural 

dynamics of I. scapularis ticks and density thresholds required to maintain B. burgdorferi within 

the population, but also to simulate various tick population management strategies to predict 

their effectiveness (Mount et al. 1997a,b). This original model was updated, as LYMESIM 2.0, 

to reflect current knowledge of tick and pathogen biology and become a more accurate predictive 

model to evaluate and recommend various tick control treatments (Gaff et al. 2020). The current 

study is the first to have examined tick control treatments using the updated LYMESIM 2.0 

model and marks the first ever efforts to identify optimized application strategies using any 

version of LYMESIM. Furthermore, the preliminary work done to begin to integrate and 

examine prescribed burning has begun to provide important insights into the potential of this 

often-overlooked tool for the control of I. scapularis populations and Lyme disease risk. 

Overall, the model predicted that any treatments that involved spraying were most 

effective, resulting in over 80% suppression of DON. Out of all the treatments involving 

spraying, the integrated approach of spraying + bait boxes + 4-posters, was marginally more 

effective than the others. Two studies, conducted by Schulze et al. (2007, 2008b) have tested the 
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integrated strategy employing synthetic acaracide spraying, bait boxes, and 4-posters in a 

residential setting. They tested the use of a barrier spray (year 1 only), alongside bait boxes 

(years 1-2) and four posters (years 1-3). They yielded 87%, 95%, and 86% in DON suppression 

in the first, second and third years, respectively. Thus, this integrated approach effectively 

reduced the questing tick population which seems to correlate with the current model’s findings.  

However, according to the model, the combination of all three treatments was only 

marginally better than spraying alone. Practically speaking, the combination of all three 

treatments may not be worth the added time and expense for only marginally better suppression 

compared to spraying alone. In fact, the model indicates that a single acaracide application alone 

can provide effective tick population control during years of treatment and possibly for the first-

year post treatment depending on the timing of acaracide spraying.  

The original model also concluded that a singular acaracide application was a cost-

effective short-term management option, simulating 80% reduction in DON (Mount et al. 

1997b). The use of acaracide spraying has been studied extensively, varying the type of synthetic 

acaracide used, the concentration of the active ingredient in the acaracide, and time of year 

applied. This has yielded variable results in the field in terms of percent DON suppression but 

generally falls in line with the results of our model. Specifically, in residential settings, the 

reported percent suppression for the use of barrier sprays ranged from 76-100% (Stafford 1991a, 

Curran et al. 1993, Schulze et al. 1994, 2001b, 2005, Schulze and Jordan 1995, Stafford and 

Allan 2010, Eisen and Dolan 2016). Notably, the variability seen in the results of these field 

studies may be attributed to weather. Indeed, when using the current model to evaluate the 

impact of weather on treatment outcomes, results by site and from year to year usually differed 

to some degree and in some years, differences were quite notable. 
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Spraying an area-wide acaracide is likely more effective than host-targeted treatments 

because this method targets a larger proportion of the tick population. This is because only a 

small percentage of the population would be on a host at the time of spraying, therefore 

decimating any host-seeking and quiescent ticks within the application area. Thus, this explains 

the comparatively low reported effectiveness of both host-targeted treatments within the model. 

That is, no treatment exclusively involving host-targeted methods reduced DON greater than 

42% suppression.  

Interestingly, some field studies have shown that the use of host-targeted treatments alone 

are effective long-term management techniques, although results have been variable. For 

example, Mather et al. (1993) reported an 89% DON and 97% DIN suppression following 1 year 

after the deployment of permethrin tick tubes in a residential setting. Similarly, Dolan et al. 

(2004) reported 97% and 96% DIN suppression following 1 year and 2 years, respectively, after 

the deployment of fipronil bait boxes. However, other studies have shown lower effectiveness 

with some even reporting an increase in DON, ranging between -10 – 62%, and DIN, up to two 

years post treatment (Stafford 1991b, Daniels et al. 1991). As for 4-poster devices, only a few 

reported a DON suppression of at least 80% (Solberg et al. 2003, Daniel et al. 2009, Carrol et al. 

2009b, Schulze et al. 2009). All four of these evaluated DON suppressions yearly, and upwards 

to 6 years post-treatment. Of note, they all reported their highest DON suppression in the final 

year they sampled, indicating that 4-posters may became more effective over time when used for 

several years in a row. This trend was also seen in studies that calculated DIN suppression with 

the highest suppression seen in year 5 and 6 with 67% and 68% respectively (Brei et al. 2009, 

Hoen et al. 2009). 
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Notably, the current study only evaluated the effectiveness of treatments at 25% 

efficiency after 2 years of deployment with minimal success. This in conjunction with the 

findings of previous studies seems to indicate that both bait boxes and 4-posters appear to be 

ineffective unless used on an annual basis for over two years. It is also possible that some 

previous studies saw higher suppression values because they treated greater than 25% of the 

targeted host population. Therefore, additional work evaluating the host-targeted acaracides 

long-term, that is, running the model applying the treatment for three or more consecutive years 

should be done to determine whether consistent, long-term use of host-targeted treatments could 

prove effective. Also, testing the effect of increased efficiencies on host-targeted control methods 

is warranted.  

However, if the model did find long-term, yearly use and/or higher efficiencies of host-

targeted treatments were effective, there would be several concerns. With increased acaracide 

application, the potential for development of acaracide resistance within the I. scapularis tick 

population would be a concern. Additionally, 4-poster deployment is concerning as they could 

become sites for hosts like white-tailed deer to transmit diseases such as CWD and tuberculosis 

(Wong et al. 2017).  Furthermore, consistent access to supplemental food will affect host 

populations by decreasing resource competition and thus resulting in an increase in host 

abundance which could lead to an increase in ticks and possibly pathogen prevalence as well. 

Finally, the ability to maintain 4-poster devices and bait boxes year-round for several years 

would be logistically challenging given that both the bait and acaricides must be consistently 

replenished  

In terms of host-targeted treatments impacting pathogen dynamics, the model’s simulated 

results after the application of bait boxes alone, 4-posters alone, and bait boxes + 4-posters never 
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exceeded 42% in a single year. This coincides with the original model (Mount et al. 1997b), 

which found that the percentage of infected ticks were the same in all host-targeted simulations. 

In terms of field-based studies, only two studies examining rodent-targeted treatments showed 

effective DIN suppression, e.g., at least 80%, following the first year of treatment in a residential 

setting (Mather et al. 1988, Dolan et al. 2004). Comparatively, many studies testing rodent-

targeted acaracides have shown unsatisfactory results with minimal DIN suppression (Ginsberg 

2002) or an increase in DIN (Stafford 1991b, 1992, Daniels et al. 1991, Dolan et al. 2004). As 

for 4-posters, the few studies that have evaluated the treatment’s effectiveness at reducing DIN 

have shown no field suppression over 80%, which makes sense given that white-tailed deer are 

not competent reservoirs for B. burgdorferi (Brier et al. 2009, Hoen et al. 2009).  

The model found that the time of year when spraying is applied is integral for successful 

tick suppression. Specifically, the model predicted that the best weeks for the application of the 

integrated bait box + 4-poster + spraying combination in either January to mid-April or mid-

September to early December. Notably, late fall through early spring is when adult blacklegged 

ticks are most active and laying eggs. It’s also when larvae overwinter in a quiescent state in the 

leaf litter. So, by preemptively treating the environment and competent hosts when adults are 

active and larvae are quiescent appears to be critical points in the life cycle for effective tick 

control. Specifically, by reducing quiescent larvae, they are then unable to molt and emerge as 

nymphs the following spring and summer. Additionally, the reduction of bloodmeals for adult 

ticks would therefore decrease the number of eggs laid, leading to decreased numbers of nymphs 

the following year. For example, by treating for adults in December of 2007, nymphal reduction, 

if seen, would occur in 2009. 
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It is important to note that when examining the ideal time window for a single spraying 

treatment, when spraying was done early in the year, it yielded effective suppression for only the 

years that the treatment was applied. For the first-year post treatment, the DON suppression was 

comparatively low implying that the effectiveness of treatment may not be sustained the year 

following treatment. Comparatively, when spraying was applied later in the year, it resulted in a 

delayed suppression, meaning that the treatment was only effective in the second year of 

treatment and the first-year post-treatment. Notably, this was somewhat in contrast to what was 

observed when treatment was applied for two consecutive years of control which was done for 

most of the model runs. When this was done, three years of effective DON suppression was 

achieved (e.g., both treatment years and post-treatment year one). However, for these runs, the 

model was programmed such that for each year, it ran multiple iterations of the treatment testing 

different timings of the single application and only reporting the single, lowest DON value. This 

was likely leading to an over estimation of the duration of suppression for those model runs. 

What the results of us testing singular treatments for one year indicate is that two years of 

treatment with spraying + bait boxes + 4-posters likely would only yield 2 years of suppression. 

Rather, to get 3 years of suppression as observed in much of the model output would, in reality, 

require treatment early in the 1st year of treatment and then in the second year, a treatment early 

in the year and late in the year.  

To test the effects of long-term use of spraying + bait boxes + 4-poster devices, the model 

was used to simulate DON and DIN after varying years of treatments. It was determined that 

treating long-term every year in perpetuity was only marginally more effective at reducing DON 

than treating every other year and both were found to suppress DON by at least 80%. However, 

based on how the model was programmed and insights gained when identifying ideal time 
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windows for singular treatment, the suppression achieved the year after treatment would likely 

require two treatments per year (one early in the year and one later in the year) to achieve 

suppression during both the year of treatment and 1-year post-treatment. Regardless, alternating 

years of treatment application may be a more affordable option for homeowners, while 

potentially reducing the negative environmental effects associated with spraying on an annual 

basis.  

While it was not imperative to apply treatment in consecutive years to suppress DON, the 

model did show that treatment in consecutive years is required to reduce DIN. Specifically, the 

ability to reach 80% suppression for DIN was not previously seen with any of the treatments 

being applied for two consecutive years. However, when treatments were applied for eight 

consecutive years, DIN was found to approach / reach and maintain 80% suppression. This 

notion, that long-term treatment may be necessary for prevalence suppression, is furthered by the 

less successful DIN suppression following application of treatments in alternating years for five 

years. Specifically, treatments every other year led to DIN suppression values more comparable 

to short-term treatment, which was not effective at reducing DIN. This suggests that treating 

annually in perpetuity may be key to reducing B. burgdorferi infection in endemic areas. 

Notably, this trend was seen with the application of spraying + bait boxes + 4-poster devices. 

However, further simulations should be run to determine whether spraying alone would be 

effective in reducing B. burgdorferi infection.  

Specifically, it is hypothesized that host-targeted treatments would likely be needed to 

impact DIN. A reduction in the prevalence of infection in the I. scapularis nymph population is 

entirely dependent on reducing the burden of immature ticks on competent rodent reservoirs, i.e., 

white-footed mice which infect the ticks. To do so, host-targeted acaracides would be necessary 
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to limit immature ticks from taking blood meals from infected hosts. Hence even if a treatment is 

applied for a year and results in an immediate reduction of infected ticks, this would not continue 

once a treatment is complete. Without a host targeted treatment, larvae would once again be able 

to take blood meals from infected hosts and perpetuate the enzootic transmission of B. 

burgdorferi.  

Finally, one often overlooked alternative to acaracide treatments for tick control is 

prescribed burning. As previously mentioned, the overuse of acaracides is concerning for several 

reasons including the risk of ticks developing acaracide resistance, negative impacts on the 

environment, and in the case of certain host-targeted treatments, increasing host population sizes 

by introducing bait and the heightened risk of disease transmission (Carroll et al. 2008, 2009a, 

Stafford et al. 2009, Eisen and Dolan 2016). By avoiding the use of acaracides, prescribed 

burning avoids all these issues. In fact, prescribed burning actively benefits most ecosystems 

when done at the right time, intensity, and frequency. Although preliminary, the initial model 

results showed that prescribed burning yielded nearly 100% (between 96-100%) suppression for 

the burns years, the year between burns, and the first-year post-burn across all three sites.  

Previous field studies have reported 74-97% suppression of I. scapularis nymphs when evaluated 

4 months to 1 year post burning, thus indicating that the model’s predicted results coincide with 

the higher end of this spectrum. However, additional work still needs to be done to 1) further 

refine model parameters, and 2) perform field validation of this new addition to the model. 

Future testing of prescribed fire should explore other burning parameters including burn 

intensity, as some of the variable efficacy in field studies can be attributed to the severity of the 

burn (Stafford et al. 1998). Additionally, the model should be run to predict the effects of 

different timings (e.g., fall versus early spring) and frequencies of burns (e.g., a single year, 
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alternating every other year and every third year and every 5th year) commonly used in 

management scenarios. Furthermore, the model currently assumes that prescribed burning affects 

hosts and ticks for the same number of weeks. Additional variables and updates to the model that 

account for the burn impacting ticks and host populations for different lengths of time may make 

the model more accurate. 

CONCLUSION: 

This research was conducted with the goal of opening dialogue with pest control 

companies and public health professionals regarding optimized treatment strategies to reduce 

Lyme disease risk for humans. The model output conveyed that the optimized treatment strategy 

would be spraying once sometime in January through mid-April and once again sometime 

between September and December every other year at a 25% effectiveness. However, because 

synthetic acaricides pose environmental and health concerns, further adapting the model to 

evaluate alternatives like natural and fungal acaracides is warranted. Indeed, previous studies 

have shown that fungal acaracides are comparatively less harmful than synthetic acaracides, 

while attaining the same effectiveness (Stafford and Allan 2010). Additionally, the model should 

be used to further research optimized host-targeted methods.  

Finally, the preliminary model incorporating prescribed burning as a non-acaricidal 

treatment option has shown fire to potentially be an effective tick control option. Further 

research needs to be done to further refine the prescribed burning model parameters and explore 

optimized strategies for use of prescribed fire as a tick control method. Field validation of the 

new prescribed fire aspect of LYMESIM 2.0 should also be done.  
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FIGURES: 
 
 

 
 
 
 
 
Figure 1. Although too numerous to depict in a single diagram, above depicts some of the core I. 
scapularis natural history factors accounted for in LYMESIM 2.0. All eggs laid in the same 
week are assigned a single cohort. The progression of each cohort life-stage is dependent on 
various environmental and biological factors including success rate at each “activity stage”, 
weather conditions, host availability, and temperature. As ticks expend energy when host-
seeking, the total number of weeks spent at any given life stage is 80 weeks – 3 weeks for every 
week spent host-seeking. Wildlife species shown next to each respective tick life stage are host 
species commonly used by that particular life stage. The cohort cumulative degree (CCDW) 
threshold is the cumulative number of degrees the weekly average temperature is higher than 6°C 
and must be met at each life stage to progress to the next. See Gaff et al. (2020) for a 
comprehensive overview of all mathematical equations and factors considered in LYMESIM 2.0. 
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Figure 2. DON (graphs on left) and DIN (graphs on right) supression for each treatment: 4-
poster method (2), bait boxes (3), spraying (5) and their combinations. Values were reported for 
each site (Cary, NY [top], Itasca, MN [middle], and Norfolk, VA [bottom]) given a 25% 
effectiveness and 2 years of treatment applied in 2007 and 2008. The redline represents the 80% 
reduction threshold. 
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Figure 3.  Heat maps represent percent DON (graphs on left) and DIN (graphs on right) 
suppression for each treatment: 4-poster method (2), bait boxes (3), spraying (5) and their 
combinations. Values were reported for each site (Cary, NY [top], Itasca, MN [middle], and 
Norfolk, VA bottom]) given a 25% effectiveness and 2 years of treatment applied in 2007 & 
2008. Percent supression is lumped into 5 categories represented in the legend: 1 = x < 0%, 2 = 0 
< x < 15%, 3 = 15% < x < 50%, 4 = 50% < x < 80%, and 5 = x > 80%. 
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Figure 4. Model simulations were run examining outcomes of different timings of a single 
application of spraying (in conjunction with bait boxes and 4-posters being out year-round) at a 
25% efficiency. Simulations were run for each week of the year. Each week on the above graph 
depicts the model outcome for application of spraying in that week. DON suppression values 
represent the second year of treatment, at the Cary, NY. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. DON (top) and DIN (bottom) suppression when applying the 4-poster + bait box + 
spraying combination at 25% efficiency for different durations and frequencies. Values were 
reported for each site. The legend TreatmentYear refers to the varying treatment durations tested. 
For example, 1 = 1 year of treatment in 2007; 1,3 =  treatment applied in years one and three 
(e.g. in 2007 and 2009); 1,3,5 = treatment applied in years 1,3, and 5 (e.g. in 2007, 2009, and 
2011), 8 = treatment applied for 8 consecutive years (e.g. 2007-2014). 
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Figure 6. Heat maps represent percent DON (graphs on left) and DIN (graphs on right) 
supression given an application of the 4-poster + bait box + spraying combination at 25% 
efficiency for different durations by location. Values were reported for each site (Cary, NY [top], 
Itasca, MN [middle], and Norfolk, VA [bottom]. Percent supression is binned into 5 categories: 1 
= x < 0%, 2 = 0 < x < 15%, 3 = 15% < x < 50%, 4 = 50% < x < 80%, and 5 = x > 80%. 
Treatment on the y-axis refers to the varying treatment durations tested: 1 = 1 year of treatment 
in 2007; 1,3 =  treatment applied in years one and three (e.g. in 2007 and 2009); 1,3,5 = 
treatment applied in years 1,3, and 5 (e.g. in 2007, 2009, and 2011), 8 = treatment applied for 8 
consecutive years (e.g. 2007-2014). 
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Figure 7. Comparing varying efficiencies on DON (left) and DIN (right) suppression when 
applying the 4-poster + bait box + spraying combination for two consecutive years starting in 
2007. Values were reported for each site (Cary, NY [top], Itasca, MN [middle], and Norfolk, VA 
[bottom]). The redline represents the 80% reduction threshold. 
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Figure 8. Comparing effects of applying treatment starting in different years on DON (left) and 
DIN (right) supression given the application of the 4-poster + bait box + spraying combination 
for two consecutive years at a 25% efficiency. For each bar, the first year of control treatment 
(CY1) begins in the year it corresponds to on the legend. Treatment is applied in CY1 and CY2 
(control treatment year 2). Values were reported for each site (Cary, NY [top], Itasca, MN 
[middle], and Norfolk, VA [bottom]). PY1 and PY2 corresponds to one year post-treatment and 
two-years post-treatment, respectively. The redline represents the 80% reduction threshold. 
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Figure 9. The DON (left) and DIN (right) suppression using bait boxes + spraying + 4-poster 
devices for the following time windows: LateMarch/EarlyJune (weeks 9-13 and 24-28), 
LateMarch/EarlyJune_Alt (weeks 17-21 and 24-28, applying treatment in 2007 and 2009), 
LateMarch/November (weeks 9-13 and 43-47), and LateMay/EarlyJune (weeks 17-21 and 24-
28). Graphs presented in the site order of Cary, NY (top), Itasca, MN (middle), and Norfolf, VA 
(bottom. All treatments applied in 2007 and 2008 unless otherwise noted. The redline represents 
the 80% reduction threshold. 
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Figure 10. Comparing DON (left) and DIN (right) suppression when applying prescribed 
burning at a 5% efficiency for two years alternating application in 2007 & 2009. Values were 
reported for each site: Cary, NY (top), Itasca, MN (middle), and Norfolk, VA (bottom). The 
prescribed burn treatment is compared to all other previously tested treatments and combinations 
which were applied at a 25% efficiency for 2 consecutive years (2007-2008). Control treatments 
tested: 4-poster method (2), bait boxes (3), spraying (5), prescribed fire (6) and their 
combinations. The redline represents the 80% reduction threshold. 
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